Metallothionein: Potential therapeutic target for osteosarcoma
Received Date : 07 Dec 2018
Accepted Date : 11 Feb 2019
Doi: 10.1016/j.jons.2019.02.002 - Article's Language: EN
J Oncol Sci 5 (2019) 13-18
This is an open access article under the CC BY-NC-ND license
The most aggressive and deadliest form of cancer for adolescence and young adults is osteosarcoma. Current treatment of osteosarcoma mainly consists of chemotherapy along with surgery has dramatically improved survival rate. However unfortunately, the survival-rate remained unchanged in its metastatic stages that might be due to chemoresistance against the treatment of osteosarcoma. Till date, in clinical applications, there is no precise diagnostic/prognostic marker of osteosarcoma. Metallothioneins are thiol rich intracellular proteins, which binds to several cytotoxic agents. Metallothionein isoforms participate actively in numerous physiological and patho-physiological processes like proliferation, apoptosis, angiogenesis, and the heavy metals detoxification. There are many evidences in literature which are suggestive of participation of these proteins in carcinogenesis and antitumor therapy. Furthermore, a number of studies also reveal the important role of metallothioneins in tumor cell defense mechanism against the radiotherapy by preventing apoptosis. Also in osteosarcoma patients in comparison to healthy controls, the higher level of metallothioneins levels further indicates their significant role. Moreover higher level of metallothionein-2A in chemotherapy resistance patients with osteosarcoma further becomes potential supportive evidence. According to the information available in the literature, one may accomplish that metallothioneins has a role in osteosarcoma progression and chemoresistance and may become a potential diagnostic marker as well as a reliable therapeutic target. However, further multicentric studies are needed in support. A better knowledge of the communication among metallothioneins in osteosarcoma as well as with chemotherapeutic agents is necessity and may exposed new perspectives in cancer treatment.
  1. Meyers PA, Gorlick R. Osteosarcoma. Pediatric Clinics. 1997;44(4):973e989. [Crossref] 
  2. Link MP, Eilber F. Pediatric oncology: osteosarcoma. In: Pizzo DG, Poplack DG, eds. Principles and Practice of Pediatric Oncology. Philadelphia: Lippincott; 1989: 689e711.
  3. SiclariVA, Qin L. Targeting the osteosarcoma cancer stem cell. J Orthop Surg Res. 2010;5(1):78. [Crossref]  [PubMed]  [PMC] 
  4. Marko TA, Diessner BJ, Spector LG. Prevalence of metastasis at diagnosis of osteosarcoma: an international comparison. Pediatr Blood Canc. 2016;63(6): 1006e1011. [Crossref]  [PubMed]  [PMC] 
  5. Stiller CA. International patterns of cancer incidence in adolescents. Cancer Treat Rev. 2007;33(7):631e645. [Crossref]  [PubMed] 
  6. McKenna RJ, Schwinn CP, Soong KY, et al. Sarcomata of the osteogenic series (osteosarcoma, fibrosarcoma, chondrosarcoma, parostealosteogenic sarcoma, and sarcomata arising in abnormal bone): an analysis of 552 cases. J Bone Joint Surg. 1966;48(1):1e26. [Crossref] 
  7. Kempf BB, Bielack SS, Jürgens H, et al. Osteosarcoma relapses after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559e568. [Crossref]  [PubMed] 
  8. Yücetürk G, Sabah D, Keçeci B, et al. Prevalence of bone and soft tissue tumors. ActaOrthopTraumatolTurc. 2011;45(3):135e143. [Crossref]  [PubMed] 
  9. Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc. 1957;79(17):4813e4814. [Crossref] 
  10. K€agi JH, Vallee BL. Metallothionein: a cadmium-and zinc-containing protein from equine renal cortex. J Biol Chem. 1960;235(12):3460e3465.
  11. Kojima Y, Berger C, Vallee BL, et al. Amino-acid sequence of equine renal metallothionein-1B. Proc Natl Acad Sci Unit States Am. 1976;73(10):3413e3417. [Crossref]  [PubMed]  [PMC] 
  12. Sutherland DE, Stillman MJ. The "magic numbers" of metallothionein. Metall. 2011;3(5):444e463. [Crossref]  [PubMed] 
  13. Lazo JS, Bahnson RR. Pharmacological modulators of DNA-interactive antitumor drugs. Trends Pharmacol Sci. 1989;10(9):369e373. [Crossref] 
  14. Kimura T, Kambe T. The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci. 2016;17(3):336. [Crossref]  [PubMed]  [PMC] 
  15. Higashimoto M, Isoyama N, Ishibashi S, et al. Tissue-dependent preventive effect of metallothionein against DNA damage in dyslipidemic mice under repeated stresses of fasting or restraint. Life Sci. 2009;84(17-18):569e575. [Crossref] 
  16. Jacob C, Maret W, Vallee BL. ProcNatlAcadSci USA. 1998;95:3489e3494.
  17. Maret W, Vallee BL. ProcNatlAcadSci USA. 1998;95:3478e3482. [Crossref]  [PubMed]  [PMC] 
  18. Jiang LJ, Maret W, Vallee BL. ProcNatlAcadSci USA. 1998;95:3483e3488. [Crossref]  [PubMed]  [PMC] 
  19. Sabolic I, Breljak D, Skarica M, et al. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals. 2010;23(5): 897e926. [Crossref]  [PubMed] 
  20. Savage SA, Mirabello L. Using Epidemiology and Genomics to Understand Osteosarcoma Etiology. Sarcoma; 2011. [Crossref]  [PubMed]  [PMC] 
  21. Berman SD, Calo E, Landman AS, et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci Unit States Am. 2008;105(33):11851e11856. [Crossref]  [PubMed]  [PMC] 
  22. Osteosarcoma.
  23. Criscitiello C, Viale G, Gelao L, et al. Crosstalk between bone niche and immune system: osteoimmunology signaling as a potential target for cancer treatment. Cancer Treat Rev. 2015;41(2):61e68. [Crossref]  [PubMed] 
  24. Bizon A, Je˛dryczko K, Milnerowicz H. The role of metallothionein in oncogenesis and cancer treatment. Poste˛py Higieny Medycyny Doswiadczalnej. 2017;71: 98e109. [Crossref]  [PubMed] 
  25. Krizkova S, Kepinska M, Emri G, et al. Microarray analysis of metallothioneins in human diseasesda review. J Pharmaceut Biomed Anal. 2016;117:464e473. [Crossref]  [PubMed] 
  26. Hozumi I. Roles and therapeutic potential of metallothioneins in neurodegenerative diseases. Curr Pharmaceut Biotechnol. 2013;14(4):408e413. [Crossref]  [PubMed] 
  27. Lynes MA, Kang YJ, Sensi SL, et al. Heavy metal ions in normal physiology, toxic stress, and cytoprotection. Ann N Y Acad Sci. 2007;1113(1):159e172. [Crossref]  [PubMed] 
  28. Krizkova S, Masarik M, Majzlik P, et al. Serum metallothionein in newly diagnosed patients with childhood solid tumours. Acta Biochim Pol. 2010;57(4): 561. [Crossref]  [PubMed] 
  29. Endo-Munoz L, Cumming A, Sommerville S, et al. Osteosarcoma is characterised by reduced expression of markers of osteoclastogenesis and antigen presentation compared with normal bone. Br J Canc. 2010;103(1):73. [Crossref]  [PubMed]  [PMC] 
  30. Habel N, Hamidouche Z, Girault I, et al. Zinc chelation: a metallothionein 2A's mechanism of action involved in osteosarcoma cell death and chemotherapy resistance. Cell Death Dis. 2013;4(10):874. [Crossref]  [PubMed]  [PMC] 
  31. Gorlick R, Meyers PA. Osteosarcoma necrosis following chemotherapy: innate biology versus treatment-specific. Journal of pediatric hematology/oncology. 2003;25(11):840e841. [Crossref]  [PubMed] 
  32. Richon VM, Schulte N, Eastman A. Multiple mechanisms of resistance to cisdiamminedichloroplatinum (II) in murine leukemia L1210 cells. Cancer Res. 1987;47(8):2056e2061.
  33. Andrew PA, Howell SB. Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer cells(Cold Spring Harbor, NY. 1989;2(2):35e43, 1990.
  34. Thiele DJ, Walling MJ, Hamer DH, et al. Mammalian metallothionein is functional in yeast. Science. 1986;231(4740):854e856. [Crossref]  [PubMed] 
  35. Cherian MG, Jayasurya A, Bay BH, et al. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res Fund Mol Mech Mutagen. 2003;533(1):201e209. [Crossref]  [PubMed] 
  36. Theocharis SE, Margeli AP, Klijanienko JT, et al. Metallothionein expression in human neoplasia. Histopathology. 2004;45(2):103e118. [Crossref]  [PubMed] 
  37. Surowiak P, Materna V, Maciejczyk A, et al. Nuclear metallothionein expression correlates with cisplatin resistance of ovarian cancer cells and poor clinical outcome. Virchows Arch. 2007;450(3):279e285. [Crossref]  [PubMed] 
  38. Mintz MB, Sowers R, Brown KM, et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res. 2005;65(5): 1748e1754. [Crossref]  [PubMed] 
  39. Raudenska M, Gumulec J, Podlaha O, et al. Metallothionein polymorphisms in pathological processes. Metall. 2014;6(1):55e68. [Crossref]  [PubMed]  [PMC]   PMid:   
  40. Shnyder SD, Hayes AJ, Pringle J, et al. P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma. Br J Canc. 1998;78(6):757. [Crossref]  [PubMed]  [PMC] 
  41. Uozaki H, Horiuchi H, Ishida T, et al. Overexpression of resistance-related proteins (metallothioneins, glutathione-S-transferase p, heat shock protein 27, and lung resistance-related protein) in osteosarcoma. Cancer. 1997;79(12): 2336e2344. [Crossref] 
  42. Geller DS, Gorlick R. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 2010;10:705e718.
  43. Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125:555e581. [Crossref]  [PubMed] 
  44. Friebele JC, Peck J, Pan X, et al. Osteosarcoma: a meta-analysis and review of the literature. Am J Orthoped. 2015;44(12):547e553.
  45. Wittig JC, Bickels J, Priebat D, et al. Osteosarcoma: a multidisciplinary approach to diagnosis and treatment. Am Fam Physician. 2002;65:1123e1132.
  46. Doz F, Roosen N, Rosenblum ML. Metallothionein and anticancer agents: the role of metallothionein in cancer chemotherapy. Journal of neuro-oncology. 1993;17(2):123e129. [Crossref]  [PubMed] 
  47. Kelley SL, Basu A, Teicher BA, et al. Overexpression of metallothionein confers resistance to anticancer drugs. Science. 1988;241:1813e1815. [Crossref]  [PubMed] 
  48. Kasahara K, Fujiwara Y, Nishio K, et al. Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer Res. 1991;51:3237e3242.
  49. Nakano M, Sogawa CA, Sogawa N, et al. Expression pattern of cisplatin-induced metallothionein isoforms in squamous cell carcinoma. Anticancer Res. 2003;23: 299e303.
  50. Choi CH, Cha YJ, An CS, et al. Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein. Cancer Cell Int. 2004;4:6. [Crossref]  [PubMed]  [PMC] 
  51. Surowiak P, Materna V, Maciejczyk A, et al. Nuclear metallothionein expression correlates with cisplatin resistance of ovarian cancer cells and poor clinical outcome. Virchows Arch. 2007;450:279e285. [Crossref]  [PubMed] 
  52. Arndt CA, Rose PS, Folpe AL, et al. Common musculoskeletal tumors of childhood and adolescence. In: Mayo Clinic Proceedings. vol. 87. Elsevier; 2012: 475e487. [Crossref]  [PubMed]  [PMC] 
  53. Bielack S, Jürgens H, Jundt G, et al. Osteosarcoma: the COSS experience. In: Pediatric and Adolescent OsteosarcomaSpringer, Boston, MA. 2009:289e308. [Crossref]  [PubMed] 
  54. Gosheger G, Gebert C, Ahrens H, et al. Endoprosthetic reconstruction in 250 patients with sarcoma. Clin Orthop Relat Res. 2006;450:164e171. [Crossref]  [PubMed] 
  55. Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776e790. [Crossref]  [PubMed] 
  56. He H, Ni J, Huang J. Molecular mechanisms of chemoresistance in osteosarcoma. Oncology letters. 2014;7(5):1352e1362. [Crossref]  [PubMed]  [PMC] 
  57. Bertino JR. Karnofsky memorial lecture. Ode to methotrexate. J Clin Oncol. 1993;11(1):5e14. [Crossref]  [PubMed] 
  58. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994;54(16):4313e4320.
  59. Wei L, Song XR, Wang XW, et al. Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghuazhongliuzazhi [Chinese journal of oncology]. 2006;28(6): 445e448.
  60. Graf N, Ang WH, Zhu, et al. Role of endonucleases XPF and XPG in nucleotide excision repair of platinated DNA and cisplatin/oxaliplatin cytotoxicity. Chembiochem. 2011;12(7):1115e1123. [Crossref]  [PubMed]  [PMC] 
  61. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27(13):2278. [Crossref]  [PubMed]  [PMC] 
  62. Liebermann DA, Hoffman B, Steinman RA, et al. Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene. 1995;11(1):199e210.
  63. Katayama M, Kawaguchi T, Berger MS, et al. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14(3):548. [Crossref]  [PubMed] 
  64. Liu B, Ma W, Jha RK, et al. Cancer stem cells in osteosarcoma: recent progress and perspective. Actaoncologica. 2011;50(8):1142e1150. [Crossref]  [PubMed] 
  65. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834. [Crossref]  [PubMed] 
  66. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U.S.A. 2006;103(7):2257e2261. [Crossref]  [PubMed]  [PMC] 
  67. Kerbel RS, Kobayashi H, Graham CH, et al. Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes? J Cell Biochem. 1994;56(1):37e47. [Crossref]  [PubMed]