Nucleic acid amplification-based HER2 I655V molecular detection for breast cancer
Received Date : 06 Jul 2018
Accepted Date : 23 Dec 2018
Doi: 10.1016/j.jons.2018.12.001 - Article's Language: EN
This is an open access article under the CC BY-NC-ND license
Single Nucleotide Polymorphism at codon 655 of HER2 gene has been extensively evaluated for its role as a susceptible biomarker for breast cancer development and the contradictive result of its role has been a debate among researchers as evidenced from case-control studies. Three platforms of molecular detection systems named PCR-RFLP, TaqMan assay, and AS-PCR have been used intensively in elucidating this important SNP with considering the affordability and simplicity of detection especially in research format which employs plenty of samples such as in the epidemiological study. Nevertheless, methodological related-bias generated from the association study between HER2I655V SNP and breast cancer risk becomes primary drawback that must be addressed seriously in an attempt to obtain a solid conclusion. This review will discuss the application of nucleic acid amplification-based methods for HER2I655V SNP detection, the potency of bias generated by these genotyping technologies, and strategies to improve their reliability of detection.
  1. Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: verexpression and therapeutic implications. Mol Biol Int. 2014;2014: 1e9. [Crossref]  [PubMed]  [PMC] 
  2. Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med. 2005;353:1652e1654. [Crossref]  [PubMed] 
  3. Sakai K, Mori S, Kawamoto T, et al. Expression of epidermal growth factor receptors on normal human gastric epithelia and gastric carcinomas. J Natl Cancer Inst (Bethesda). 1986;77:1047e1052.
  4. Flejou JF, Paraf F, Muzeau F, et al. Expression of c-erbB-2 oncogene product in Barrett's adenocarcinoma: pathological and prognostic correlations. J Clin Pathol. 1994;47:23e26. [Crossref]  [PubMed]  [PMC] 
  5. Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 50:4087e4091.
  6. Rolitsky CD, Theil KS, McGaughy VR, Copeland LJ, & Niemann TH. HER-2/neu amplification and overexpression in endometrial carcinoma. Int J Gynecol Pathol, 18:138e143. [Crossref]  [PubMed] 
  7. Lin WL, Kuo WH, Chen FL, et al. Identification of the coexisting HER2 gene amplification and novel mutations in the HER2 protein-overexpressed mucinous epithelial ovarian cancer. Ann Oncol. 2011;18:2388e2394. [Crossref]  [PubMed] 
  8. Arpino G, Wiechmann L, Osborne CK, & Schiff R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev. 29:217e233. [Crossref]  [PubMed]  [PMC] 
  9. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, Kholodenko BN. Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Syst Biol. 2007;3:1e16. [Crossref]  [PubMed]  [PMC] 
  10. Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D. Coregulation of epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) levels and locations: quantitative analysis of HER2 overexpression effects. Cancer Res. 2003;63(5):1130e1137.
  11. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF, Hynes NE. The ErbB2/ ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci Unit States Am. 2003;100(15):8933e8938. [Crossref]  [PubMed]  [PMC] 
  12. Ingthorsson S, Andersen K, Hilmarsdottir B, Mælandsmo GM, Magnusson MK, Gudjonsson T. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR. Oncogene. 2016;35: 4244. [Crossref]  [PubMed]  [PMC] 
  13. Gupta P, Srivastava SK. HER2 mediated de novo production of TGFb leads to SNAIL driven epithelial-to-mesenchymal transition and metastasis of breast cancer. Mol Oncol. 2014;8:1532e1547. [Crossref]  [PubMed]  [PMC] 
  14. Shao S, Zhao X, Zhang X, et al. Notch1 signaling regulates the epithelialemesenchymal transition and invasion of breast cancer in a Slugdependent manner. Mol Canc. 2015;14:28. [Crossref]  [PubMed]  [PMC] 
  15. Lavaud P, Andre F. Strategies to overcome trastuzumab resistance in HER2- overexpressing breast cancers: focus on new data from clinical trials. BMC Med. 2014;12(1):1e10. [Crossref]  [PubMed]  [PMC] 
  16. Chandarlapaty DG and S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11(1):263e275. [Crossref]  [PubMed]  [PMC] 
  17. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988e1004. 18. Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H. Association between gain-of-function mutations in PIK3CA and resistance to HER2- targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol. 2010;21(2):255e262.
  18. Norasikin S, Nafi M, Generali D, Kramer-marek G, Strina C, Cappelletti M. Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer. Oncotarget. 2014;5(15): 5934e5949. [Crossref]  [PubMed]  [PMC] 
  19. Feldinger K, Generali D, Kramer-marek G, Gijsen M, Ng TB, Wong JH. ADAM10 mediates trastuzumab resistance and is correlated with survival in HER2 positive breast cancer. Oncotarget. 2014;5(16):6633e6646. [Crossref]  [PubMed]  [PMC] 
  20. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401e404. [Crossref]  [PubMed]  [PMC] 
  21. Lee JW, Soung YH, Seo SH, Kim SY, Park CH, Wang YP. Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clin Canc Res. 2006;12(1):57e61. [Crossref]  [PubMed] 
  22. Park YH, Shin H, Jung HH, Choi Y, Ahn T, Park K. Role of HER2 mutations in refractory metastatic breast cancers: targeted sequencing results in patients with refractory breast cancer. Oncotarget. 2015;6(31):32027e32038. [Crossref] 
  23. Endo Y, Dong Y, Yoshimoto N, et al. HER2 mutation status in Japanese HER2- negative breast cancer patients. Jpn J Clin Oncol. 2014;44:619e623. [Crossref]  [PubMed] 
  24. Endo Y, Dong Y, Kondo N, et al. HER2 mutation status in Japanese HER2- positive breast cancer patients. Breast Canc. 2016;23:902e907. [Crossref]  [PubMed] 
  25. Sun Z, Shi Y, Shen Y, Cao L, Zhang W, Guan X. Analysis of different HER-2 mutations in breast cancer progression and drug resistance. J Cell Mol Med. 2015;19(12):2691e2701. [Crossref]  [PubMed]  [PMC] 
  26. Wang T, Xu Y, Sheng S, et al. HER2 somatic mutations are associated with poor survival in HER2-negative breast cancers. Cancer Sci. 2017;108:671e677. [Crossref]  [PubMed]  [PMC] 
  27. Brookes AJ. The essence of SNPs. Gene. 1999;234:177e186. [Crossref] 
  28. Karki R, Pandya D, Elston RC, Ferlini C. Defining "mutation" and "polymorphism" in the era of personal genomics. BMC Med Genomics. 2015;8(1): 1e7. [Crossref]  [PubMed]  [PMC] 
  29. Xie D, Shu XO, Deng Z, Wen WQ, Creek KE, Dai Q. Population-based, caseecontrol study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst. 2000;92(5):412e417.
  30. Frank B, Hemminki K, Wirtenberger M, Bermejo JL, Bugert P, Klaes R. The rare ERBB2 variant Ile654Val is associated with an increased familial breast cancer risk. Carcinogenesis. 2005;26(3):643e647. [Crossref]  [PubMed] 
  31. Si P, Xu Y, Ouyang T, Li J, Wang T, Fan Z. HER2 Pro1170Ala polymorphism is associated with decreased survival rate in HER2-negative breast cancer. Oncol Lett. 2017;13(5):3793e3798. [Crossref]  [PubMed]  [PMC] 
  32. Papewalis J, Nikitin AY, Rajewsky MF. G to A polymorphism at amino acid codon 655 of the human erbB-2/HER2 gene. Nucleic Acids Res. 1991;19:5452. [Crossref]  [PubMed]  [PMC] 
  33. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 1986;319: 226e230. [Crossref]  [PubMed] 
  34. Beauclair S, Formento P, Fischel JL, Lescaut W, Largillier R, Chamorey E. Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Ann Oncol. 2007;18(8):1335e1341. [Crossref]  [PubMed] 
  35. Lemieux J, Diorio C, Cǒte MA, Provencher L, Barabe F, Jacob S. Alcohol and HER2 polymorphisms as risk factor for cardiotoxicity in breast cancer treated with trastuzumab. Anticancer Res. 2013;33(6):2569e2576.
  36. Gomez Pen~a C, Davila-Fajardo CL, Martínez-Gonzalez LJ, Carmona-Saez P, Soto Pino MJ, Sanchez Ramos J. Influence of the HER2 Ile655Val polymorphism on trastuzumab-induced cardiotoxicity in HER2-positive breast cancer patients: a meta-analysis. Pharmacogenetics Genom. 2015;25(8):388e393. [Crossref]  [PubMed] 
  37. Lu S, Wang Z, Liu H, Hao X. HER2 Ile655Val polymorphism contributes to breast cancer risk: evidence from 27 case-control studies. Breast Canc Res Treat. 2010;124(3):771e778. [Crossref]  [PubMed] 
  38. Wang H, Liu L, Lang Z, Guo S, Gong H, Guan H. Polymorphisms of ERBB2 and breast cancer risk: a meta-analysis of 26 studies involving 35,088 subjects. J Surg Oncol. 2013;108(6):337e341. [Crossref]  [PubMed] 
  39. Chen W, Yang H, Tang WR, Feng SJ, Wei YL. Updated meta-analysis on HER2 polymorphisms and risk of breast cancer: evidence from 32 studies. Asian Pac J Cancer Prev APJCP. 2014;15(22):9643e9647. [Crossref]  [PubMed] 
  40. Krishna BM, Chaudhary S, Panda AK, Mishra DR, Mishra SK. Her2- Ile655Valpolymorphism and its association with breast cancer risk: an updated meta-analysis of case-control studies. Sci Rep. 2018;8(1):1e19. [Crossref]  [PubMed]  [PMC] 
  41. Ma Y, Yang J, Zhang P, Liu Z, Yang Z, Qin H. Lack of association between HER2 codon 655 polymorphism and breast cancer susceptibility: meta-analysis of 22 studies involving 19,341 subjects. Breast Canc Res Treat. 2011;125(1): 237e241. [Crossref]  [PubMed] 
  42. Dahabreh IJ, Murray S. Lack of replication for the association between HER2 I655V polymorphism and breast cancer risk: a systematic review and metaanalysis. Cancer Epidemiol. 2011;35(6):503e509. [Crossref]  [PubMed] 
  43. Hosking L, Lumsden S, Lewis K, et al. Detection of genotyping errors by HardyeWeinberg equilibrium testing. Eur J Hum Genet. 2004;12:395. [Crossref]  [PubMed] 
  44. Mutluhan H, Akbas E, Erdogan NE, Soylemez F, Senli MS, Polat A. The influence of HER2 genotypes as molecular markers on breast cancer outcome. DNA Cell Biol. 2008;27(10):575e579. [Crossref]  [PubMed] 
  45. Naidu R, Yip CH, Taib NA. Polymorphisms of HER2 Ile655Val and cyclin D1 (CCND1) G870A are not associated with breast cancer risk but polymorphic allele of HER2 is associated with nodal metastases. Neoplasma. 2008;55(2): 87e95.
  46. Tao W, Wang C, Han R, Jiang H. HER2 codon 655 polymorphism and breast cancer risk: a meta-analysis. Breast Canc Res Treat. 2009;114(2):371e376. [Crossref]  [PubMed] 
  47. Kallel I, Kharrat N. HER2 polymorphisms and breast cancer in Tunisian women. Genet Test Mol Biomarkers. 2010;14(1):29e35. [Crossref]  [PubMed] 
  48. Kara N, Karakus N, Ulusoy AN, Ozaslan C, Gungor B, Bagci H. P53 codon 72 and HER2 codon 655 polymorphisms in Turkish breast cancer patients. DNA Cell Biol. 2010;29(7):387e392. [Crossref]  [PubMed] 
  49. Zhang M, Guo LL, Cheng Z, et al. A functional polymorphism of TGFBR2 is associated with risk of breast cancer with ERþ, PRþ, ERþ PRþ and HER2- expression in women. Oncol Lett. 2011;2:653e658. [Crossref]  [PubMed]  [PMC] 
  50. AbdRaboh NR, Shehata HH, Ahmed MB, Bayoumi FA. HER1 R497K and HER2 I655V polymorphisms are linked to development of breast cancer. Dis Markers. 2013;34:407e417. [Crossref]  [PubMed]  [PMC] 
  51. Ozturk O, Canbay E, Kahraman OT, Fatih Seyhan M, Aydogan F, Celik V. HER2 Ile655Val and PTEN IVS4 polymorphisms in patients with breast cancer. Mol Biol Rep. 2013;40(2):1813e1818. [Crossref]  [PubMed] 
  52. Roca L, Dieras V, Roche H, Lappartient E, Kerbrat P, Cany L. Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCERPACS04 trial. Breast Canc Res Treat. 2013;139(3):789e800. [Crossref]  [PubMed] 
  53. Riaz SK, Rashid MM, Kayani MA, Malik MFA. Role of HER-2 Ile655Val polymorphism as universal cancer susceptibility marker among different cancers. Arch Iran Med. 2016;19(6):430e438.
  54. Trevino V, Falciani F, Barrera-Salda~na HA. DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med. 2007;13:527. [Crossref]  [PubMed]  [PMC] 
  55. Teumer A, Ernst FD, Wiechert A, et al. Comparison of genotyping using pooled DNA samples (allelotyping) and individual genotyping using the affymetrix genome-wide human SNP array 6.0. BMC Genomics. 2013;14:506. [Crossref]  [PubMed]  [PMC] 
  56. Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013;101(1), 22-1. [Crossref] 
  57. Rohit A, Maiti B, Shenoy S, Karunasagar I. Polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) for rapid diagnosis of neonatal sepsis. Indian J Med Res. 2016;143:72e78. [Crossref]  [PubMed]  [PMC] 
  58. Keshava C, McCanlies EC, Keshava N, Wolff MS, Weston A. Distribution of HER2(V655) genotypes in breast cancer cases and controls in the United States. Cancer Lett. 2001;173(1):37e41. [Crossref] 
  59. Kamali-Sarvestani E, Talei AR, Merat A. Ile to Val polymorphism at codon 655 of HER-2 gene and breast cancer risk in Iranian women. Cancer Lett. 2004;215(1):83e87. [Crossref]  [PubMed] 
  60. Haghshenas L, Khandouzi M. HER2 Ile655Val SNP and risk of breast cancer. IJMER. 2014:1e10.
  61. Carrillo-Moreno DI, Figuera LE, Maga~na-Torres MT, Zú~niga-Gonzalez G, Puebla- Perez AM, Gallegos-Arreola MP. Association of a HER2 Ile655Val (Rs1136201) polymorphism in breast cancer in A Mexican population. W J Res Rev. 2016:15e20.
  62. de Almeida FC, Banin Hirata BK, Ariza CB, Losi Guembarovski R, de Oliveira KB, Suzuki KM. HER2 Ile655Val polymorphism is negatively associated with breast cancer susceptibility. J Clin Lab Anal. 2018;32(6):1e6. [Crossref]  [PubMed]  [PMC] 
  63. Livak KJ. Allelic discrimination using fluorogenic probes and the 50 nuclease assay. Genet Anal. 1999;14:143e149. [Crossref] 
  64. McGuigan FEA, Ralston SH. Single nucleotide polymorphism detection: allelic discrimination using TaqMan. Psychiatr Genet. 2002;12:133e136. [Crossref]  [PubMed] 
  65. Millikan R, Eaton A, Worley K, Biscocho L, Hodgson E, Huang WY. HER2 codon 655 polymorphism and risk of breast cancer in African Americans and whites. Breast Canc Res Treat. 2003;79(3):355e364. [Crossref]  [PubMed] 
  66. Malkki M, Petersdorf EW. Genotyping of single nucleotide polymorphisms by 50 nuclease allelic discrimination. Immunogenetics. 2012:173e182. [Crossref]  [PubMed]  [PMC] 
  67. Lee S, Fedele V, Lacalamita R, Bruno M, Schittulli F, Ginzinger D. 655Val and 1170Pro ERBB2 SNPs in familial breast cancer risk and BRCA1 alterations. Cell Oncol. 2007;29(3):241e248.
  68. Schleinitz D, DiStefano JK, Kovacs P. Targeted SNP genotyping using the TaqMan® assay. In: Disease Gene Identification. 2011:77e87. [Crossref]  [PubMed] 
  69. Osaki R, Imaeda H, Ban H, Aomatsu T, Bamba S, Tsujikawa T. Accuracy of genotyping using the TaqMan PCR assay for single nucleotide polymorphisms responsible for thiopurine sensitivity in Japanese patients with inflammatory bowel disease. Exp Ther Med. 2011;2(5):783e786. [Crossref]  [PubMed]  [PMC] 
  70. Qu S, Cai Q, Gao YT, Lu W, Cai H, Su Y. ERBB2 genetic polymorphism and breast cancer risk in Chinese women: a population-based case-control study. Breast Canc Res Treat. 2008;110(1):169e176. [Crossref]  [PubMed]  [PMC] 
  71. Wu M, Du ZW, Liu JN, Song Y, Wang YL, Zhang GZ. Improved allele-specific polymerase chain reaction for single nucleotide polymorphism genotyping. Chem Res Chin Univ. 2010;26:259e262.
  72. Baxter SW, Campbell IG. Re: population-based, caseecontrol study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst (Bethesda). 2001;93:557e558. [Crossref]  [PubMed] 
  73. Hauptmann M, Sigurdson AJ, Chatterjee N, Rutter JL, Hill DA, Doody MM. Re: population-based case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst. 2003;95(16):1251e1252. [Crossref]  [PubMed] 
  74. Montgomery GW, Campbell MJ, Dickson P, Herbert S, Siemering K, Ewen- White KR. Estimation of the rate of SNP genotyping errors from DNA extracted from different tissues. Twin Res Hum Genet. 2005;8(4):346e352. [Crossref]  [PubMed] 
  75. Suemizu H, Ohnishi Y, Maruyama C, Tamaoki N. Two-color allele-specific polymerase chain reaction (PCR-SSP) assay of the leptin receptor gene (Leprdb) for genotyping mouse diabetes mutation. Exp Anim. 2001;50: 435e439. [Crossref]  [PubMed] 
  76. Budiarto BR, Desriani. Dataset reporting detection of breast cancer-related HER2I655Vpolymorphism using allele-specific polymerase chain reaction. Data Br. 2016;9:689e695. [Crossref]  [PubMed]  [PMC] 
  77. Heid IM, Lamina C, Küchenhoff H, Fischer G, Klopp N, Kolz M. Estimating the single nucleotide polymorphism genotype misclassification from routine double measurements in a large epidemiologic sample. Am J Epidemiol. 2008;168(8):878e889. [Crossref]  [PubMed]  [PMC] 
  78. Budiarto BR, Azamris, Desriani. Modified allele-specific PCR improves HER2 Ile655Val detection by reducing genotyping errors. Appl Cancer Res. 2017;37(1):36. [Crossref] 
  79. Lewis C, Knight J. Genetic association studies: design, analysis and interpretation. Briefings Bioinf. 2012;3(2):146e153. [Crossref]  [PubMed] 
  80. Schork NJ, Fallin D, Thiel B, Xu X, Broeckel U, Jacob HJCD. The future of genetic case-control studies. Adv Genet. 2001;42:191e212. [Crossref] 
  81. Baena IA, Garces-Palacio IC Iii H, Grisales I. The effect of misclassification error on risk estimation in case-control studies Efeito da ma classificaç~ao na estimativa de risco em estudo caso-controle. Rev Bras Epidemiol. 2015;18(182): 341e356. [Crossref]  [PubMed] 
  82. Sinnott JA, Kraft P. Artifact due to differential error when cases and controls are imputed from different platforms. Hum Genet. 2012;131(1):111e119. [Crossref]  [PubMed]  [PMC] 
  83. Johnson EO, Hancock DB, Levy JL, et al. Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy. Hum Genet. 2013;132:509e522. [Crossref]  [PubMed]  [PMC] 
  84. Zheng W, Kataoka N, Xie D, Young SR. RESPONSE: Re: population-based, casecontrol study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst (Bethesda). 2001;93:558e559. [Crossref] 
  85. Gaedigk A, Freeman N, Hartshorne T, et al. SNP genotyping using TaqMan® technology: the CYP2D6* 17 assay conundrum. Sci Rep. 2015;5:9257. [Crossref]  [PubMed]  [PMC] 
  86. Little J, Higgins JPT, Ioannidis JPA, Moher D, Gagnon F, Von Elm E. STrengthening the REporting of genetic association studies (STREGA)- an extension of the STROBE statement. Genet Epidemiol. 2009;33(7):581e598.
  87. Thelle DS. STROBE and STREGA: instruments for improving transparency and quality of reporting scientific results. Eur J Epidemiol. 2009;24(1):7e8. [Crossref]  [PubMed] 
  88. Benusiglio PR, Lesueur F, Luccarini C, Conroy DM, Shah M, Easton DF. Common ERBB2 polymorphisms and risk of breast cancer in a white British population: a case-control study. Breast Cancer Res. 2005;7(2):204e209. [Crossref]  [PubMed]  [PMC] 
  89. Leal SM. Detection of genotyping errors and pseudo-SNPs via deviations from Hardy-Weinberg equilibrium. Genet Epidemiol. 2005;29(3):204e214. [Crossref]  [PubMed]  [PMC] 
  90. Salanti G, Amountza G, Ntzani EE, Ioannidis JPA. Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet. 2005;13(7):840e848. [Crossref]  [PubMed] 
  91. Chen B, Cole JW, Grond-Ginsbach C. Departure from Hardy weinberg equilibrium and genotyping error. Front Genet. 2017;8:1e6. [Crossref]  [PubMed]  [PMC] 
  92. Nedel F, Andre DDA, Oliveira IOD, Tarquinio SBC, Demarco FF. Buccal cells submitted to three different storage conditions before DNA extraction. J Appl Oral Sci. 2009;17:113e115. [Crossref]  [PubMed]  [PMC] 
  93. van Huis-Tanja L, Kweekel D, Gelderblom H, et al. Concordance of genotype for polymorphisms in DNA isolated from peripheral blood and colorectal cancer tumor samples. Pharmacogenomics. 2013;14:2005e2012. [Crossref]  [PubMed] 
  94. Marisi G, Passardi A, Calistri D, Zoli W, Amadori D, Ulivi P. Discrepancies between VEGF 1154 G> a polymorphism analysis performed in peripheral blood samples and FFPE tissue. Int J Mol Sci. 2014;15:13333e13343. [Crossref]  [PubMed]  [PMC] 
  95. Siddig A, Mohamed AO, Kamal H, Awad S, Hassan AH, Zilahi E. HER-2/neu Ile655Val polymorphism and the risk of breast cancer: a case-control study. Ann N Y Acad Sci. 2008;1138:84e94. [Crossref]  [PubMed] 
  96. Nelson SE, Gould MN, Hampton JM, Trentham-Dietz A. A case-control study of the HER2 Ile655Val polymorphism in relation to risk of invasive breast cancer. Breast Cancer Res. 2005;7(3):R357eR364. [Crossref]  [PubMed]  [PMC] 
  97. An HJ, Kim NK, Oh D, Kim SH, Park MJ, Jung MY. Her2V655 genotype and breast cancer progression in Korean women. Pathol Int. 2005;55(2):48e52. [Crossref]  [PubMed] 
  98. Sezgin E, Sahin FI, Yagmurdur MC, Demirhan B. HER-2/neu gene codon 655 (Ile/Val) polymorphism in breast carcinoma patients. Genet Test Mol Biomarkers. 2011;15(3):143e146. [Crossref]  [PubMed] 
  99. Kalemi TG, Lambropoulos AF, Gueorguiev M, Chrisafi S, Papazisis KT, Kotsis A. The association of p53 mutations and p53 codon 72, Her 2 codon 655 and MTHFR C677T polymorphisms with breast cancer in Northern Greece. Cancer Lett. 2005;222(1):57e65. [Crossref]  [PubMed] 
  100. Tommasi E, Simopoulos K, Tripsianis G, Tentes I, Anagnostopoulos K, Sivridis E. Allelic imbalance of HER-2 codon 655 polymorphism among different religious/ethnic populations of northern Greece and its association with the development and the malignant phenotype of breast cancer. Neoplasma. 2007;54(5):365e373.
  101. Al-janabi AM, Algenabi AHA, Alkhafaji SM, Alsabri I. Association of TP53 [Arg72Pro] gene polymorphism and breast cancer risk in Iraqi female patients. Exp Mol Pathol. 2015;6(12):1128e1138.
  102. Akisik E, Dalay N. Estrogen receptor codon 594 and HER2 codon 655 polymorphisms and breast cancer risk. Exp Mol Pathol. 2004;76(3):260e263. [Crossref]  [PubMed] 
  103. Taberlet P. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996;24(16):3189e3194. [Crossref]  [PubMed]  [PMC] 
  104. Berry DP, O'Brien A, Wall E, McDermott K, Randles S, Flynn P. Inter- and intrareproducibility of genotypes from sheep technical replicates on Illumina and Affymetrix platforms. Genet Sel Evol. 2016;48(1):1e5. [Crossref]  [PubMed]  [PMC] 
  105. Wang-Gohrke S, Chang-Claude. J. Re: population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst. 2001;93(21):1657. [Crossref]  [PubMed] 
  106. Hishida A. Re: population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst. 2002;94(23):1807e1808. [Crossref]  [PubMed] 
  107. Pinto D, Vasconcelos A, Costa S, et al. HER2 polymorphism and breast cancer risk in Portugal. Eur J Cancer Prev. 2004;13(3):177e181. [Crossref]  [PubMed] 
  108. Zubor P, Vojvodova A, Danko J, et al. HER-2 [Ile655Val] polymorphism in association with breast cancer risk: a population-based case-control study in Slovakia. Neoplasma. 2006;53(1):49, 1.
  109. Lee SC, Hou MF, Hsieh PC, et al. A caseecontrol study of the HER2 Ile655Val polymorphism and risk of breast cancer in Taiwan. Clin Biochem. 2008;41(3): 121e125. [Crossref]  [PubMed] 
  110. Rajkumar T, Samson M, Rama R, et al. TGFb1 (Leu10Pro), p53 (Arg72Pro) can predict for increased risk for breast cancer in south Indian women and TGFb1 Pro (Leu10Pro) allele predicts response to neo-adjuvant chemo-radiotherapy. Breast Canc Res Treat. 2008;112(1):81e87. [Crossref]  [PubMed]