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Pancreatic ductal adenocarcinoma (PDAC) is a 
deadly disease even in the localized stage. The 5-year 
survival is approximately 10% in the USA, and 80-
85% of the patients present unresectable or metastatic 
cancer.1,2 Even for individuals eligible for surgery,  
the prognosis is dismal, with only 20% surviving 5 
years.1-3 While recent advances in surgery and adjuvant 
chemotherapy have improved survival times, the out-
comes are still far from desired. PDAC remains the 
fourth leading cause of cancer-related deaths in the 
world.4 A significant obstacle is the considerable het-
erogeneity of the disease and the lack of reliable clini-
cal risk stratification. Early-stage colorectal cancer and 
breast cancer do not present these disadvantages, and 

hence, it is easy to tailor treatment selection. In the con-
stantly changing paradigm of new treatments, it is es-
sential to identify prediction strategies for selecting the 
best treatment for the right patient.5 However, current 
knowledge currently lacks such guiding ability. 

Most recent research on localized PDAC has fo-
cused on detecting targetable genomic aberrations. 
However, limited success has been achieved due to 
the relative rarity of these alterations.6 To select the 
optimal treatment for each patient, the precise as-
sumption of survival is paramount.7 However, tradi-
tional survival models such as Cox Proportional- 
hazards assume a linear or log-linear relationship of 
covariates to estimate the survival. This approach 
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precludes including complex relationships between 
the covariates that are essential for individualized de-
cision-making or precision medicine. Machine learn-
ing has been proposed as a feasible approach to tackle 
this problem. However, it has reached a performance 
comparable to Cox models very recently and the use 
of machine learning-based survival prediction in real-
life datasets has been rarely studied in PDAC.8,9 

The overarching hypothesis of the current study 
is that machine learning models will outperform tra-
ditional survival models to predict disease-free sur-
vival (DFS) and overall survival (OS) in operated 
PDAC cases. This hypothesis was tested in a single-
institution cohort from a tertiary reference center.  

 MATERIAL AND METHODS 
PATIENT SELECTION  
The resected PDAC cases from a university cancer 
center in Turkey between 2005 and 2017 were retro-
spectively reviewed. The study was approved by the 
Hacettepe University Institutional Review Board in 
compliance with the Helsinki Declaration (no: GO 
21/489, date: 6.4.2021). The cases had a histological 
diagnosis of PDAC and had undergone an R0 or R1 
resection. The exclusion criteria were the presence of 
distant metastasis at the initial presentation, R2 re-
section, neoadjuvant treatment, and irretrievable clin-
ical, laboratory, or survival data. The population size 
was not calculated to test the maximum performance 
of the models with all the available cases.  

VARIABLES AND OuTCOMES  
The following data were collected from the electronic 
health records and patient files: demographic fea-
tures, laboratory data, reports of cross-sectional im-
aging and pathology, operational documents, and 
survival times. These variables were incorporated 
into the machine learning models as described below. 
The primary outcome was the performance of the ma-
chine learning models in predicting over 6 months of 
DFS and over 12 months of overall survival. 

MODELS, FEATuRE SELECTION, AND 
 MODEL TRAINING 
The machine learning methods were adapted to test 
the performance of this approach for the problem. 

From our database, two machine learning models-one 
deep learning model, DeepHit, and the other gradi-
ent boosting decision tree model, LightGBM (Light 
Gradient Boosting Machine), were constructed. 
Technical details of these architectures are beyond 
the scope of this article, so they are briefly described 
to provide a perspective to the reader. The DeepHit 
model adapts the survival models with multilayered 
neural networks. It is a multi-task neural network, 
which consists of a shared sub-network and cause-
specific sub-networks. DeepHit employs a residual 
connection (skip connection) from the input covari-
ates into the input of each cause-specific sub-net-
work. It is trained with a custom loss function 
designed to handle censored data. This loss function 
is the sum of 2 terms: The log-likelihood of the joint 
distribution of the first hitting time and event and a 
combination of cause-specific ranking of loss func-
tions. LightGBM is a gradient boosting framework 
that uses a tree-based learning algorithm. A major 
difference between LightGBM and other decision 
tree-based algorithms lies in the construction of the 
trees. LightGBM does not grow a tree level-wise. In-
stead, it grows trees leaf-wise. It chooses the leaf it 
believes will yield the largest decrease in loss. Light-
GBM implements a highly optimized histogram-
based decision tree learning algorithm, which yields 
great efficiency and memory consumption. The 
LightGBM algorithm utilizes two novel techniques 
called Gradient-Based One-Side Sampling and Ex-
clusive Feature Bundling. They allow the algorithm 
to run faster while maintaining a high level of accu-
racy. LightGBM is trained with both regression loss 
(root-mean-square error) and classification loss (bi-
nary cross-entropy) for this problem.10,11 For the 
analysis, 50 train/test splits (random shuffle split with 
replacement) were used to estimate the generaliza-
tion error. The models were trained and evaluated 50 
times with different training and test sets. The num-
ber of iterations was selected as 50, and the test size 
was specified as 20% to obtain statistically signifi-
cant results. These values work for both small and 
large datasets. The mean score of 50 models was the 
estimated generalization error, and the standard de-
viation was the confidence interval. The models were 
constructed and used in Python. The predictive abil-
ity of the models in each validation fold was assessed 
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using Harrell’s concordance index, and the overall 
performance of the models was represented by the 
median score computed over 50 cross-validation cy-
cles. 

STATISTICAL ANALYSIS 
Firstly, the baseline characteristics of the cases were 
reported with descriptive analyses of the mean (stan-
dard error) for parametric variables, median (inter-
quartile range or range as indicated) for 
non-parametric variables, and frequency and per-
centages for categorical variables. Then, the differ-
ences between the survival groups were appropriately 
tested for statistical significance with the Chi-square, 
Mann-Whitney U, and linear regression tests. The OS 
time was defined as the period from surgery to the 
last follow-up or death. The DFS time was defined as 
the period between surgery to disease progression or 
death. 

The univariate survival analysis was performed 
with Kaplan-Meier curves, and comparisons between 
the groups were performed via the log-rank test. Con-
ventional multivariable survival analysis was per-
formed for DFS and OS using the Cox proportional- 
hazards regression analysis. Lastly, the performance 
of the Cox models to machine learning models was 
evaluated from the area under the receiver operator 
characteristic curves (AUROC). All statistical studies 
were performed using the Statistical Package of So-
cial Sciences (SPSS) Version 27.0 (Armonk, NY: 
IBM Corp). A type-I error level of 5% (p<0.05) was 
considered the threshold limit for statistical signifi-
cance. 

 RESuLTS  
STuDY POPuLATION AND CHARACTERISTICS  
From the institutional retrospective database, 121 
PDAC cases that fulfilled the inclusion criteria were 
included. The median age of the population was 62 
(minimum-maximum: 29-88). There was male pre-
dominance (65% vs. 35%). Among the tumors, 82% 
were located in the pancreatic head and neck, 12% in 
the pancreatic tail, and 6% in the pancreatic body. 
The 1, 2, and 3 stages of the tumors were presented 
by 33, 60, and 28 patients, respectively; no patient 
had stage 4 cancer. All patients met the resection cri-

teria at presentation. According to tumor localization, 
they underwent resection surgery with curative intent 
in the Whipple procedure or distal pancreatectomy. 
After the surgery, 85 (71%) patients had negative re-
section margins (R0). The remaining patients had 
only microscopic residual disease. Histopathologic 
characteristics of the tumors are presented in Table 
1. Among them, 78% of patients received adjuvant 
chemotherapy and chemoradiotherapy in the form of 
Gemcitabine, Cisplatin, Taxanes, 5-FU, and their 
combinations.  

SuRVIVAL CHARACTERISTICS 
During a median follow-up of 18.4 months (IQR: 
9.8-36.7), 91 (75.2%), patients died and 98 (81%) 
patients had DFS events. The median OS of the 
study population was 21.9 (IQR: 11.5-44.4) months, 
and the median DFS was 11.8 (IQR: 6-25.6) months. 
The baseline patient characteristics were broadly 
similar in patients with disease-free survivals shorter 
or longer than 6 months (Table 2). Baseline charac-
teristics were also similar in patients with overall 
survivals shorter or longer than 12 months, albeit 
vascular invasion, thrombosis, and perineural inva-
sion were different (Table 3). In univariate analyses, 
the presence of tumoral thrombosis (p=0.003), 
pathological N stage (p<0.001), and higher postop-
erative carbohydrate antigen 19-9 (CA 19-9) levels 
(<100 vs. >100, p<0.001) were associated with im-
paired OS; there was a trend toward better OS in the 
presence of diabetes before the diagnosis (p=0.113). 
The DFS analyses were consistent with the OS 
analyses. 

A multivariable analysis model was constructed 
using the clinical parameters with a p value of <0.15. 
The consistent association of perineuronal invasion 
and pathological T stage with OS and DFS in the lit-
erature necessitated their use as the adjustment pa-
rameters. Higher postoperative CA-19 levels [hazard 
ratios (HR): 2.643, 95% confidence intervals (CI): 
1.288-5.426, p=0.008] and higher pathological N 
stage (for N1, HR: 2.248, 95% CI: 1.052-4.801, 
p=0.036; for N2, HR: 4.073, 95% CI: 1.725-9.617, 
p<0.001) were associated with lower OS. For DFS, 
higher postoperative CA 19-9 levels (HR: 2.472, 95% 
CI: 1.178-5.187) and node positivity (for N1, HR: 
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1.918, 95% CI: 0.951-3.870, p=0.069; for N2, HR: 
2.814, 95% CI: 1.220-6.491, p=0.015) were associ-
ated with poor outcome. 

A model was constructed using the statistically 
significant clinical parameters (postoperative CA 19-
9 levels and pathological N stage). The 0-1 system 
was used for the coding (for CA 19-9 levels <100, 
the code was 0 and for levels >100, the code was 1. 
For the pathological N stage N0=0, N1=1, and 
N2=2), so the patients had scores from 0 to 3. The 
AUROC analyses demonstrated AUC values of 0.752 
(95% CI: 0.625-0.880, p<0.001) and 0.668 (95% CI: 
0.506-0.830, p=0.045) for the 12-month OS and 6-
month DFS, respectively. 

MODELS  
Deep learning models were constructed to predict 6 
months of disease-free survival, 12 months, and 24 
months of OS in the pancreatic cancer cohort. Se-

lected features were diabetes at presentation, tu-
moral thrombosis, pathological T stage, pathologi-
cal N stage, postoperative CA 19-9 levels, and 
perineural invasion. Two different machine learn-
ing models were constructed: DeepHit and Light-
GBM. The outputs from the DeepHit and 
LightGBM models for DFS and OS with the AUCs, 
respectively, were as follows: Relapse at 6 months 
was 0.58 (±0.177) and 0.73 (±0.098); survival over 
12 months was 0.56 (±0.14) and 0.78 (±0.078); sur-
vival over 24 months was 0.53 (±0.13) and 0.63 
(±0.083). These results are summarized in Figure 1 
and Table 4. The performance of the Cox models 
was compared with that of the machine learning 
models using the AUROC (Figure 2). Across 50-re-
peat, 5-fold cross-validation, the median C-index 
(IQR) was 0.71 (IQR: 0.62-0.83) for the 12-month 
OS survival and 0.68 (IQR: 0.59-0.75) for the 6-
month DFS (Figure 3 and Figure 4). 

Overall characteristics of the cases  
Gender Male 79 (65.3%) 
Age, median (IQR)  62 (29-88) 
Symptoms at presentation New onset diabetes 49 (40.5%) 
 Weight loss 20 (16.5%) 
 Intestinal obstruction 93 (76.9%) 
Tumor location in the pancreas Head 99 (81.8%) 

Body 7 (5.8%) 
Tail 15 (12.4%) 

Operability at presentation Resectable 97 (80.2%) 
Borderline 20 (16.5%) 

 unresectable 4 (3.3%) 
Residual disease after surgery R0 85 (70.2%) 

R1 36 (29.8%) 
 R2 0 (0%) 
Stage Stage 1 33 (27.3%) 

Stage 2 60 (49.6%) 
Stage 3 28 (23.1%) 

 Stage 4 0 (0%) 
Thrombosis Absent 99 (81.8%) 
 Present 22 (18.2%) 
Perineural invasion Absent 7 (5.8%) 

Present 85 (70.2%) 
 NA 29 (24%) 
Postoperative CA 19-9 Over 100 20 (27.4%) 

TABLE 1:  Characteristics of the study population.

CA 19-9: Carbohydrate antigen 19-9.
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 DISCuSSION  
In this study, the performance of machine learning 
algorithms in predicting early relapse and medium-
term mortality was tested in resectable non-metasta-
tic PDAC and compared with the Cox 
proportional-hazards model. The results demon-
strated that the performance of the LightGBM ma-
chine learning models was comparable to that of the 

Cox proportional-hazards model in this patient group. 
As presented above, the AUROC analyses of the 
LightGMB machine learning model were 0.73 
(±0.098) for the 6-month DFS and 0.78 (±0.078) for 
the 12-month OS. In comparison, the AUC values for 
the Cox proportional-hazards model were 0.752 (95% 
CI: 0.625-0.880, p<0.001) and 0.668 (95% CI: 0.506-
0.830, p=0.045) for the 12-month OS and 6-month 
DFS, respectively. 

Disease-free survival Shorter than 6 months Longer than 6 months p value 
Gender Male 24 (70.6%) 55 (63.2%) 0.444 
Age at diagnosis Mean 65 61  

<65 years 16 (47.1%) 57 (65.5%) 0.062 
>65 years 18 (52.9%) 30 (34.5%)  

Type of surgery Whipple's 32 (94.1%) 74 (85.1%) 0.174 
Distal pancreatectomy with splenectomy 2 (5.9%) 13 (14.9%)  

Residual status R0 resection 22 (64.7%) 63 (72.4%) 0.404 
R1 resection 12 (35.3%) 24 (27.6%)  
R2 resection 2 (0%) 2 (0%)  

Resectability at presentation Resectable 24 (70.6%) 73 (83.9%) 0.235 
Borderline 8 (23.5%) 12 (13.8%)  
unresectable 2 (5.9%) 2 (2.3%)  

Vascular invasion None 26 (76.5%) 78 (89.7%) 0.061 
Present 8 (23.5%) 9 (10.3%)  

Location of tumor Head 30 (88.2%) 69 (79.3%) 0.5 
Body 1 (2.9%) 6 (6.9%)  
Tail 3 (8.8%) 12 (13.8%)  
uncinate 2 (0%) 2 (0%)  

TNM stage Stage 1 6 (17.6%) 27 (31%) 0.188 
Stage 2 17 (50%) 43 (49.4%)  
Stage 3 11 (32.4%) 17 (19.5%)  
Stage 4 2 (0%) 2 (0%)  

Weight loss at presentation Absent 2 (5.9%) 18 (20.7%) 0.141 
Present 18 (52.9%) 40 (46%)  
NA 14 (41.2%) 29 (33.3%)  

Obstruction at presentation Absent 6 (17.6%) 22 (25.3%) 0.37 
Present 28 (82.4%) 65 (74.7%)  
NA 2 (0%) 2 (0%)  

Diabetes at presentation Absent 21 (61.8%) 51 (58.6%) 0.751 
Present 13 (38.2%) 36 (41.4%)  

Thrombosis Absent 25 (73.5%) 74 (85.1%) 0.139 
Present 9 (26.5%) 13 (14.9%)  

Perineural invasion Absent 2 (5.9%) 5 (5.7%) 0.673 
Present 22 (64.7%) 63 (72.4%)  
NA 10 (29.4%) 19 (21.8%)

TABLE 2: Comparison of patients with disease-free survivals shorter or longer than 6 months.

TNM: Tumor-node-metastasis.
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The performance of the LightGBM model, but not of 
the DeepHit model, was similar to that of the Cox pro-
portional-hazards model. The respective AUROC val-
ues of 0.58 (±0.177), 0.56 (±0.14), and 0.53 (±0.13) 
for the 6-month DFS, 12-month OS, and 24-month OS 
of the other algorithm did not yield an acceptable per-

formance for prediction. This observation underlined 
that different machine learning models could yield sig-
nificantly different results depending on the dataset 
and the problem. To the best of our knowledge, there 
have been no efforts in predicting the prognosis of lo-
calized PDAC with machine learning methods. 

Shorter than 12 months Longer than 12 months p value 
Gender Male 28 (71.8%) 51 (62.2%) 0.3 
Age at diagnosis 65 (0%) 61 (0%)  

<65 years 18 (46.2%) 55 (67.1%) 0.028* 
>65 years 21 (53.8%) 27 (32.9%)  

TNM stage Stage 1 5 (12.8%) 28 (34.1%) 0.014* 
Stage 2 20 (51.3%) 40 (48.8%)  
Stage 3 14 (35.9%) 14 (17.1%)  
Stage 4 2 (0%) 2 (0%)  

Location of tumor Head 35 (89.7%) 64 (78%) 0.230 
Body 2 (5.1%) 5 (6.1%)  
Tail 2 (5.1%) 13 (15.9%)  
uncinate 2 (0%) 2 (0%)  

Weight loss at presentation Absent 6 (15.4%) 14 (17.1%) 0.973 
Present 19 (48.7%) 39 (47.6%)  
NA 14 (35.9%) 29 (35.4%)  

Obstruction at presentation Absent 5 (12.8%) 23 (28%) 0.063 
Present 34 (87.2%) 59 (72%)  
NA 2 (0%) 2 (0%)  

Diabetes at presentation Absent 25 (64.1%) 47 (57.3%) 0.477 
Present 14 (35.9%) 35 (42.7%)  
NA 2 (0%) 2 (0%)  

Resectability at presentation Resectable 28 (71.8%) 69 (84.1%) 0.276 
Borderline 9 (23.1%) 11 (13.4%)  
unresectable 2 (5.1%) 2 (2.4%)  

Type of surgery Whipple's 37 (94.9%) 69 (84.1%) 0.094 
Distal pancreatectomy with splenectomy 2 (5.1%) 13 (15.9%)  

Residual status R0 resection 28 (71.8%) 57 (69.5%) 0.797 
R1 resection 11 (28.2%) 25 (30.5%)  
R2 resection 2 (0%) 2 (0%)  

Vascular invasion Absent 30 (76.9%) 74 (90.2%) 0.049* 
Present 9 (23.1%) 8 (9.8%)  

Thrombosis Absent 26 (66.7%) 73 (89%) 0.003* 
Present 13 (33.3%) 9 (11%)  
NA 2 (0%) 2 (0%)  

Perineural invasion Absent 2 (0%) 7 (8.5%) 0.029* 
Present 25 (64.1%) 60 (73.2%)  
NA 14 (35.9%) 15 (18.3%)

TABLE 3: Comparison of patients with overall survivals shorter or longer than 12 months.

TNM: Tumor-node-metastasis.* <0.05.
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Pancreatic cancer needs new strategies to combat 
its morbidity, mortality, and healthcare burden. Re-
search efforts to date have yielded extensive data that 
include but are not limited to clinical, histopathologic, 
radiologic, genomic variables, and complex interac-
tions in between these domains.12-15 This knowledge 
base should be used as a backbone for a precision med-
icine approach. However, the employment of this big 
data remains limited, and the adoption of machine 
learning can be addressed by this limitation.  FIGURE 1: Kaplan-Meier curve of the study population.

6 month disease-free survival (AUROC±SD) 12-month overall survival (AUROC±SD) 
Cox proportional hazards model 0.35* 0.26** 
DeepHit 0.58 (±0.177) 0.56 (±0.14) 
LightGBM 0.73 (±0.098) 0.78 (±0.078)

TABLE 4:  Prediction performances of the Cox and machine learning models.

*p<0.045; **p<0.001; AuROC: Area under the receiver operator characteristic curves; SD: Standard deviation.

FIGURE 2: Outputs of machine learning models; the line represents the mean value of 50 different models with each approach. A: DeepHit models for the 6-month disease-
free survival. B: Light Gradient Boosting Machine (LightGBM) models for the 6-month disease-free survival. C: DeepHit models for the 6-month overall survival. CD: Light 
Gradient Boosting Machine models for 12-month overall survival. Disease-free and overall survivals for DeepHit are as follows: Relapse at 6 months, 0.58 (±0.177); sur-
vival over 12 months, 0.56 (±0.14); survival over 24 months, 0.53 (±0.13). Disease-free and overall survivals for LightGBM are as follows: Relapse at 6 months, 0.73 
(±0.098); survival over 12 months, 0.78 (±0.078); survival over 24 months, 0.63 (±0.083).
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Artificial intelligence methods have been tested 
to tackle other problems with pancreatic cancer.16-20 
Most studies focused on the early detection and 
screening of pancreatic cancer, working on strategies 
that utilized imaging, blood-based, and clinical data. 
Only 20-30% of the patients are currently diagnosed 
while the disease is localized.3 If possible, adopting 
these efforts in clinical practice will enable earlier 
treatment, and thus, more prolonged survival. How-
ever, we will need additional strategies for optimal 
treatment of localized PDAC as their 5-year survivals 
are around 40%.21,22  

The prognosis of resectable pancreatic cancer 
has been studied extensively. Currently, known clin-
ical predictors of survival are age, gender, neoadju-
vant treatment, CA 19-9 levels, diabetes at 
presentation, tumor-node-metastasis (TNM) stage, 
tumor size, tumor grade, tumor location. Nomograms 
including these clinical parameters have also been 

used to precisely predict patient outcomes.2,23,24 Other 
prognostic biomarkers proposed for pancreatic cancer 
include histopathologic markers such as tumor bud-
ding, vascular/perineural invasion, desmoplastic re-
action, etc. Molecular markers such as DKC, MUC4, 
hENT1, micro-RNA profiles, circulating tumor 
DNA, and circulating tumor cells can also be uti-
lized.25 While the standard clinical criteria were used 
in the prognosis prediction models, additional ad-
justments according to molecular markers could not 
be made due to a lack of data. 

Machine learning models have been studied in 
breast, lung, central nervous system, urogenital, and 
gastrointestinal cancers. An extensive review is be-
yond the scope of the current discussion.26-30 Briefly, 
these studies utilized national and institutional data-
bases and multi-omic data and mostly yielded better 
predictions compared to Cox and linear regression.31 
In the current study, one of the machine learning 

FIGURE 3: The AuROC analyses of the Cox proportional hazards model for the 12-month overall survival (left) and 6-month disease-free survival (right).  
AuROC: Area under the receiver operator characteristic curves.

FIGURE 4: Harrell’s concordance indices for the 6-month DFS and 12-month OS for the LightGMB machine learning algorithm. Across 50-repeat, 5-fold cross-validation, 
the median C-index (IQR) was 0.71 (IQR: 0.62-0.83) for the 12-month OS survival and 0.68 (IQR: 0.59-0.75) for the 6-month DFS.  
DFS: Disease-free survival; OS: Overall survival. 
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models and the Cox-regression-based dichotomous 
model displayed a similar performance, possibly due 
to the small sample size. 

The current study had several limitations inher-
ent to its small population size, retrospective design, 
and machine learning methods. A localized and re-
gional pancreatic cancer population was included 
that had undergone curative surgeries and contin-
ued management in a single institution. Addition-
ally, most patients were not treated with the current 
standards of care adjuvant regimens, limiting result 
generalization to current practice. This population 
was selected because the study was believed to 
have maximum impact on their management. How-
ever, the drawbacks of small population size, such 
as generalizability and statistical power, are ac-
knowledged. Machine learning has its limitations, 
such as over-fitting the model to the dataset; al-
though, cross-validations were performed. Further 
validation of this model in a different and larger 
dataset is required. 

 CONCLuSION 
In conclusion, machine learning should be adopted to 
a problem in medicine that connects any data virtu-

ally to a measurable outcome, including the progno-
sis prediction in difficult-to-treat cancers like pan-
creatic cancer. The future of machine learning in this 
field depends on further efforts with more extensive 
and comprehensive datasets followed by prospective 
studies. 
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