Investigation of a Glioblastoma Risk-Associated SNP of the PTPRB Gene in Familial Glioblastoma
Received Date : 13 Oct 2022
Accepted Date : 17 Dec 2022
Available Online : 10 Jan 2023
Doi: 10.37047/jos.2022-93852 - Article's Language: EN
J Oncol Sci.
This is an open access article under the CC BY-NC-ND license
Objective: To investigate the association of the single nucleotide polymorphism (SNP) rs2252784 in the protein tyrosine phosphatase receptor type B (PTPRB) gene with familial glioblastoma multiforme (GBM). Material and Methods: Genomic DNA was extracted from the peripheral blood samples of 2 sibling GBM patients, their 6 family members, 2 formalin-fixed paraffin-embedded (FFPE) tumor tissues. A 400 bp region was amplified and the restriction fragment length polymorphism (RFLP) technique was used to identify the rs2252784 SNP in exon 2 of the PTPRB gene. The GBM cell line T98G was used to validate the findings obtained from the tumor samples. Results: The analysis of DNA obtained from the blood samples of both GBM patients showed a wild-type (WT) genotype. However, the results of the PCRRFLP analysis from FFPE tumor tissues showed that the first patient (proband) was heterozygous, and his sibling was homozygous for the rs2252784 variant. Discordant results between SNP analyses of the DNA samples isolated from the blood and FFPE tumor tissue were observed. The family members of the patients had either homozygous WT or heterozygous variants. Conclusion: The rs2252784 SNP was present in the tumor DNA of the patients but not in the DNA samples obtained from blood. This discrepancy might be the result of oncogenic DNA alterations associated with tumor formation. Paired analysis of tumors and blood samples from patients and patient-matched normal blood samples from GBM-affected families might provide additional insights into the underlying genetic alterations that occur during the development of a tumor in familial GBM.
  1. Dolecek TA, Propp JM, Stroup NE,Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumorsdiagnosed in the United States in 2005-2009. Neuro Oncol. 2012;14 Suppl 5(Suppl 5):v1-49. [Crossref]  [PubMed]  [PMC] 
  2. Brada M. Pathology and genetics oftumours of the nervous system. Br J Cancer. 2001;84(1):148. [Crossref]  [PMC] 
  3. Malmer B, Iselius L, Holmberg E,Collins A, Henriksson R, Grönberg H. Genetic epidemiology of glioma. Br J Cancer.2001;84(3):429-434. [Crossref]  [PubMed]  [PMC] 
  4. Malmer B, Henriksson R, GrönbergH. Familial brain tumours-genetics or environment? A nationwide cohort study of cancer riskin spouses and first-degree relatives of brain tumour patients. Int J Cancer.2003;106(2):260-263. [Crossref]  [PubMed] 
  5. Bondy ML, Scheurer ME, Malmer B,et al; Brain Tumor Epidemiology Consortium. Brain tumor epidemiology: consensus from theBrain Tumor Epidemiology Consortium. Cancer. 2008;113(7 Suppl):1953-1968. [Crossref]  [PubMed]  [PMC] 
  6. Phi JH, Kim DG, Chung HT, Lee J,Paek SH, Jung HW. Radiosurgical treatment of vestibular schwannomas in patients withneurofibromatosis type 2: tumor control and hearing preservation. Cancer.2009;115(2):390-398. [Crossref]  [PubMed] 
  7. Villani A, Tabori U, Schiffman J,et al. Biochemical and imaging surveillance in germline TP53 mutation carriers withLi-Fraumeni syndrome: a prospective observational study. Lancet Oncol. 2011;12(6):559-567. [Crossref]  [PubMed] 
  8. Malmer B, Adatto P, Armstrong G,et al. GLIOGENE an International Consortium to Understand Familial Glioma. Cancer EpidemiolBiomarkers Prev. 2007;16(9):1730-1734. [Crossref]  [PubMed] 
  9. Shete S, Lau CC, Houlston RS, etal. Genome-wide high-density SNP linkage search for glioma susceptibility loci: results fromthe Gliogene Consortium. Cancer Res. 2011;71(24):7568-7575. [Crossref]  [PubMed]  [PMC] 
  10. Osborne RH, Houben MP, TijssenCC, Coebergh JW, van Duijn CM. The genetic epidemiology of glioma. Neurology.2001;57(10):1751-1755. [Crossref]  [PubMed] 
  11. Miki Y, Swensen J,Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancersusceptibility gene BRCA1. Science. 1994;266(5182):66-71. [Crossref]  [PubMed] 
  12. Wooster R, Bignell G, LancasterJ, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature.1995;378(6559):789-792. [Crossref]  [PubMed] 
  13. Harder KW, Anderson LL, DuncanAM, Jirik FR. The gene for receptor-like protein tyrosine phosphatase (PTPRB) is assigned tochromosome 12q15-->q21. Cytogenet Cell Genet. 1992;61(4):269-270. [Crossref]  [PubMed] 
  14. Barr AJ, Ugochukwu E, Lee WH, etal. Large-scale structural analysis of the classical human protein tyrosine phosphatome.Cell. 2009;136(2):352-363. [Crossref]  [PubMed]  [PMC] 
  15. Soady KJ, Tornillo G, Kendrick H,et al. The receptor protein tyrosine phosphatase PTPRB negatively regulates FGF2-dependentbranching morphogenesis. Development. 2017;144(20):3777-3788. [Crossref]  [PubMed]  [PMC] 
  16. NCBI. PTPRB protein tyrosine phosphatase receptor type B [Homo sapiens(human)] 8600 Rockville Pike, Bethesda MD, 20894 USA: U.S. National Library of Medicine;2021. Available from: [Link] 
  17. NCBI. dbSNP Short Genetic Variations 8600 Rockville Pike Bethesda, MD20894: National Library of Medicine; 2021. Available from: [Link] 
  18. Backes C, Harz C, Fischer U, etal. New insights into the genetics of glioblastoma multiforme by familial exome sequencing.Oncotarget. 2015;6(8):5918-5931. [Crossref]  [PubMed]  [PMC] 
  19. Sanson M, Hosking FJ, Shete S, etal. Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet.2011;20(14):2897-2904. [Crossref]  [PubMed]  [PMC] 
  20. Shete S, Hosking FJ, RobertsonLB, et al. Genome-wide association study identifies five susceptibility loci for glioma. NatGenet. 2009;41(8):899-904. [Crossref]  [PubMed]  [PMC] 
  21. Wrensch M, Jenkins RB, Chang JS,et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade gliomasusceptibility. Nat Genet. 2009;41(8):905-908. [Crossref]  [PubMed]  [PMC] 
  22. Enciso-Mora V, Hosking FJ, DiStefano AL, et al. Low penetrance susceptibility to glioma is caused by the TP53 variantrs78378222. Br J Cancer. 2013;108(10):2178-2185. [Crossref]  [PubMed]  [PMC] 
  23. Walsh KM, Codd V, Smirnov IV, etal. Variants near TERT and TERC influencing telomere length are associated with high-gradeglioma risk. Nat Genet. 2014;46(7):731-735. [Crossref]  [PubMed]  [PMC] 
  24. Qi Y, Dai Y, Gui S. Proteintyrosine phosphatase PTPRB regulates Src phosphorylation and tumour progression in NSCLC.Clin Exp Pharmacol Physiol. 2016;43(10):1004-1012. [Crossref]  [PubMed] 
  25. Expasy [Internet]. UniProtKB/Swiss-Prot P23467: Variant p.Arg94Lys: SIBSwiss Institute of Bioinformatics; 2021. Expasy [17.12.2021]. uniProtKB/Swiss-Prot P23467:Variant p.Arg94Lys:SIB Swiss Institute of Bioinformatics; 2021. Available from: [Link] 
  26. Adamsky K, Schilling J, GarwoodJ, Faissner A, Peles E. Glial tumor cell adhesion is mediated by binding of the FNIII domainof receptor protein tyrosine phosphatase beta (RPTPbeta) to tenascin C. Oncogene.2001;20(5):609-618. [Crossref]  [PubMed] 
  27. Wang H, Yang J, Schneider JA, DeJager PL, Bennett DA, Zhang HY. Genome-wide interaction analysis of pathological hallmarksin Alzheimer's disease. Neurobiol Aging. 2020;93:61-68. [Crossref]  [PubMed]  [PMC] 
  28. Ding L, Kim M, Kanchi KL, et al.Clonal architectures and driver mutations in metastatic melanomas. PLoS One.2014;9(11):e111153. [Crossref]  [PubMed]  [PMC] 
  29. Rodrigue A, Margaillan G, TorresGomes T, et al. A global functional analysis of missense mutations reveals two majorhotspots in the PALB2 tumor suppressor. Nucleic Acids Res. 2019;47(20):10662-10677. [Crossref]  [PubMed]  [PMC] 
  30. Xu H, Zhang H, Yang W, et al.Inherited coding variants at the CDKN2A locus influence susceptibility to acutelymphoblastic leukaemia in children. Nat Commun. 2015;6:7553. [Crossref]  [PubMed]  [PMC] 
  31. Phelan CM, Dapic V, Tice B, etal. Classification of BRCA1 missense variants of unknown clinical significance. J Med Genet.2005;42(2):138-146. [Crossref]  [PubMed]  [PMC] 
  32. Fierheller CT, Guitton-Sert L,Alenezi WM, et al. A functionally impaired missense variant identified in French Canadianfamilies implicates FANCI as a candidate ovarian cancer-predisposing gene. Genome Med.2021;13(1):186. [Crossref]  [PubMed]  [PMC] 
  33. Derpoorter C, Vandepoele K,Diez-Fraile A, et al. Pinpointing a potential role for CLEC12B in cancer predispositionthrough familial exome sequencing. Pediatr Blood Cancer. 2019;66(2):e27513. [Crossref]  [PubMed] 
  34. Toomey S, Carr A, Mezynski MJ, etal. Identification and clinical impact of potentially actionable somatic oncogenic mutationsin solid tumor samples. J Transl Med. 2020;18(1):99. [Crossref]  [PubMed]  [PMC] 
  35. Weischenfeldt J, Dubash T,Drainas AP, et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4and IGF2 in enhancer hijacking. Nat Genet. 2017;49(1):65-74. [Crossref]  [PubMed]  [PMC] 
  36. Shi J, Wang L, Yin X, et al.Comprehensive characterization of clonality of driver genes revealing their clinicalrelevance in colorectal cancer. J Transl Med. 2022;20(1):362. [Crossref]  [PubMed]  [PMC] 
  37. Hertz DL, Kidwell KM, Thibert JN,et al. Genotyping concordance in DNA extracted from formalin-fixed paraffin embedded (FFPE)breast tumor and whole blood for pharmacogenetic analyses. Mol Oncol. 2015;9(9):1868-1876. [Crossref]  [PubMed]  [PMC] 
  38. Cannon-Albright LA, Cooper KG,Georgelas A, Bernard PS. High quality and quantity Genome-wide germline genotypes from FFPEnormal tissue. BMC Res Notes. 2011;4:159. [Crossref]  [PubMed]  [PMC] 
  39. Gao XH, Li J, Gong HF, et al.Comparison of fresh frozen tissue with formalin-fixed paraffin-embedded tissue for mutationanalysis using a multi-gene panel in patients with colorectal cancer. Front Oncol.2020;10:310. [Crossref]  [PubMed]  [PMC] 
  40. Marisi G, Passardi A, Calistri D,Zoli W, Amadori D, Ulivi P. Discrepancies between VEGF -1154 G>A polymorphism analysisperformed in peripheral blood samples and FFPE tissue. Int J Mol Sci.2014;15(8):13333-133343. [Crossref]  [PubMed]  [PMC] 
  41. Jasmine F, Rahaman R, Roy S, etal. Interpretation of genome-wide infinium methylation data from ligated DNA informalin-fixed, paraffin-embedded paired tumor and normal tissue. BMC Res Notes. 2012;5:117. [Crossref]  [PubMed]  [PMC] 
  42. Gallagher MD, Chen-Plotkin AS.The Post-GWAS Era: From Association to Function. Am J Hum Genet. 2018;102(5):717-730. [Crossref]  [PubMed]  [PMC] 
  43. Fagny M, Platig J, Kuijjer ML,Lin X, Quackenbush J. Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes,and immune function. Br J Cancer. 2020;122(4):569-577. [Crossref]  [PubMed]  [PMC]