JOURNAL of
ONCOLOGICAL
SCIENCES

REVIEW ARTICLE

Nab-Paclitaxel-Loaded Poly (Lactic-Co-Glycolic Acid) Nanoparticles as Microtubule B-Tubulin Stabilizer in the Management of Pancreatic Cancer
Received Date : 31 Oct 2022
Accepted Date : 18 Jul 2023
Available Online : 11 Sep 2023
Doi: 10.37047/jos.2022-94097 - Article's Language: EN
Journal of Oncological Sciences. 2023;9(3):166-75.
This is an open access article under the CC BY-NC-ND license
ABSTRACT
Pancreatic cancer, specifically driven by the Kirsten rat sarcoma virus gene mutation (KRAS), remains a formidable clinical challenge with limited therapeutic options. The absence of FDA-approved drugs directly targeting KRAS necessitates exploration of novel and more effective treatment strategies. This comprehensive literature review seeks to identify promising therapeutic avenues for pancreatic cancer by evaluating advancements in drug delivery systems. Nab-paclitaxel, an antimitotic agent, exhibits superior pharmacokinetic and bioavailability profiles compared to conventional paclitaxel. Utilizing poly (lactic-co-glycolic acid) (PLGA) nanoparticles as carriers, we investigate the potential of nab-paclitaxel-loaded PLGA nanoparticles to enhance drug delivery and efficacy. Manufactured through the oil-in-water emulsification solvent evaporation method, nab-paclitaxel-loaded PLGA nanoparticles offer a faster half-life and undergo elimination via biliary excretion and metabolism. Notably, these nanoparticles leverage nanoalbumin interactions with cysteine/osteonectin-rich, acidic secreted proteins, resulting in highly selective targeting of pancreatic cancer cells. The findings of this review underscore the potential superiority of nab-paclitaxel-loaded PLGA nanoparticles in terms of pharmacokinetics, pharmacodynamics, and clinical outcomes. Their ability to address the challenges posed by KRAS-driven pancreatic cancer holds promise as a transformative approach in the treatment landscape. In conclusion, this review highlights the evolving landscape of therapeutic options for pancreatic cancer, shedding light on nab-paclitaxel-loaded PLGA nanoparticles as a potent and selective intervention. Further clinical validation and exploration of this innovative strategy are warranted to advance the management of this devastating disease.
REFERENCES
  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. [Crossref]  [PubMed] 
  2. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24(43):4846-4861. [Crossref]  [PubMed]  [PMC] 
  3. Saad AM, Turk T, Al-Husseini MJ, Abdel-Rahman O. Trends in pancreatic adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-based study. BMC Cancer. 2018;18(1):688. [Crossref]  [PubMed]  [PMC] 
  4. Fazeny FAO. Ikterus obstruktif pada penderita tumor pankreas the obstructive jaundice in patient with pancreatic tumors. Juni. 2020;11(1):197-204. [Crossref] 
  5. Ducreux M, Seufferlein T, Van Laethem JL, et al. Systemic treatment of pancreatic cancer revisited. Semin Oncol. 2019;46(1):28-38. [Crossref]  [PubMed] 
  6. Waters AM, Der CJ. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med. 2018;8(9):a031435. [Crossref]  [PubMed]  [PMC] 
  7. Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2020;17(3):153-168. [Crossref]  [PubMed] 
  8. Saung MT, Zheng L. Current standards of chemotherapy for pancreatic cancer. Clin Ther. 2017;39(11):2125-2134. [Crossref]  [PubMed]  [PMC] 
  9. Berdis AJ. Inhibiting DNA polymerases as a therapeutic intervention against cancer. Front Mol Biosci. Nov 2017;4:78. [Crossref]  [PubMed]  [PMC] 
  10. Hamada C, Okusaka T, Ikari T, et al. Efficacy and safety of gemcitabine plus S-1 in pancreatic cancer: a pooled analysis of individual patient data. Br J Cancer. 2017;116(12):1544-1550. [Crossref]  [PubMed]  [PMC] 
  11. Wu P, Wang X, Ma Y, et al. (3E,5E)-3,5-Bis(pyridin-3-methylene)-tetrahydrothiopyran-4-one enhances the inhibitory effect of gemcitabine on pancreatic cancer cells. Bioorg Chem. Aug 2020;101:104022. [Crossref]  [PubMed] 
  12. Alam S, Illo C, Ma YT, Punia P. Gemcitabine-Induced Cardiotoxicity in Patients Receiving Adjuvant Chemotherapy for Pancreatic Cancer: A Case Series. Case Rep Oncol. 2018;11(1):221-227. [Crossref]  [PubMed]  [PMC] 
  13. Wang Y, Hu GF, Zhang QQ, et al. Efficacy and safety of gemcitabine plus erlotinib for locally advanced or metastatic pancreatic cancer: a systematic review and meta-analysis. Drug Des Devel Ther. Jun 2016;10:1961-1972. [Crossref]  [PubMed]  [PMC] 
  14. Bendell J, Sharma S, Patel MR, et al. Safety and efficacy of andecaliximab (GS-5745) plus gemcitabine and nab-paclitaxel in patients with advanced pancreatic adenocarcinoma: results from a phase i study. Oncologist. 2020;25(11):954-962. [Crossref]  [PubMed]  [PMC] 
  15. Morizane C, Okusaka T, Mizusawa J, et al; members of the Hepatobiliary and Pancreatic Oncology Group of the Japan Clinical Oncology Group (JCOG-HBPOG). Combination gemcitabine plus S-1 versus gemcitabine plus cisplatin for advanced/recurrent biliary tract cancer: the FUGA-BT (JCOG1113) randomized phase III clinical trial. Ann Oncol. 2019;30(12):1950-1958. [PubMed] 
  16. Christensen JG, Olson P, Briere T, Wiel C, Bergo MO. Targeting Krasg12c -mutant cancer with a mutation-specific inhibitor. J Intern Med. 2020;288(2):183-191. [Crossref]  [PubMed] 
  17. Salgia R, Pharaon R, Mambetsariev I, Nam A, Sattler M. The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep Med. 2021;2(1):100186. [Crossref]  [PubMed]  [PMC] 
  18. Tischer J, Gergely F. Anti-mitotic therapies in cancer. J Cell Biol. 2019;218(1):10-11. [Crossref]  [PubMed]  [PMC] 
  19. Alqahtani FY, Aleanizy FS, El Tahir E, Alkahtani HM, AlQuadeib BT. Paclitaxel. Profiles Drug Subst Excip Relat Methodol. Apr 2019;44:205-238. [Crossref]  [PubMed] 
  20. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7. [Crossref]  [PubMed]  [PMC] 
  21. Massey AE, Sikander M, Chauhan N, Kumari S, Setua S, Shetty AB, et al. Next-generation paclitaxel-nanoparticle formulation for pancreatic cancer treatment. Nanomedicine. Aug 2019;20:102027. [Crossref]  [PubMed]  [PMC] 
  22. Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. Nov 2018;9:1260. [Crossref]  [PubMed]  [PMC] 
  23. Ghitman J, Biru EI, Stan R, Iovu H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater Des. August 2020;193:108805. [Crossref] 
  24. Wu ST, Fowler AJ, Garmon CB, et al. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles. BMC Cancer. 2018;18(1):457. [Crossref]  [PubMed]  [PMC] 
  25. Cullis J, Siolas D, Avanzi A, Barui S, Maitra A, Bar-Sagi D. Macropinocytosis of Nab-paclitaxel Drives Macrophage Activation in Pancreatic Cancer. Cancer Immunol Res. 2017;5(3):182-190. [Crossref]  [PubMed]  [PMC] 
  26. Zhou Q, Melton DA. Pancreas regeneration. Nature. 2018;557(7705):351-358. Erratum in: Nature. 2018;560(7720):E34. [Crossref]  [PubMed]  [PMC] 
  27. Wynne K, Devereaux B, Dornhorst A. Diabetes of the exocrine pancreas. J Gastroenterol Hepatol. 2019;34(2):346-354. [Crossref]  [PubMed] 
  28. Bakhti M, Böttcher A, Lickert H. Modelling the endocrine pancreas in health and disease. Nat Rev Endocrinol. 2019;15(3):155-171. [Crossref]  [PubMed] 
  29. Zhang L, Sanagapalli S, Stoita A. Challenges in diagnosis of pancreatic cancer. World J Gastroenterol. 2018;24(19):2047-2060. [Crossref]  [PubMed]  [PMC] 
  30. Hata T, Suenaga M, Marchionni L, Macgregor-Das A, Yu J, Shindo K, et al. Genome-wide somatic copy number alterations and mutations in high-grade pancreatic intraepithelial neoplasia. Am J Pathol. 2018;188(7):1723-1733. [Crossref]  [PubMed]  [PMC] 
  31. Zhu B, Zhu Y, Tian J, et al. A functional variant rs1537373 in 9p21.3 region is associated with pancreatic cancer risk. Mol Carcinog. 2019;58(5):760-766. [Crossref]  [PubMed] 
  32. Lim CS, Im K, Lee DS, et al. The implication of cytogenetic alterations in pancreatic ductal adenocarcinoma and intraductal papillary mucinous neoplasm identified by fluorescence in situ hybridization and their potential diagnostic utility. Gut Liver. 2020;14(4):509-520. [Crossref]  [PubMed]  [PMC] 
  33. Collateral Lethality in Pancreatic Cancer. Cancer Discov. 2017;7(4):342-343. [Crossref]  [PubMed] 
  34. Chen YJ, Ojeaburu JV, Vortmeyer A, Yu S, Jensen RT. Alterations of chromosome 3p in 24 cases of gastrinomas and their correlations with clinicopathological and prognostic features. J Pancreatol. 2020;3(1):42-49. [Crossref] 
  35. Vašíčková K, Horak P, Vaňhara P. TUSC3: functional duality of a cancer gene. Cell Mol Life Sci. 2018;75(5):849-857. [Crossref]  [PubMed] 
  36. Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci U S A. 2019;116(52):26580-26590. [Crossref]  [PubMed]  [PMC] 
  37. Baeeri M, Rahimifard M, Daghighi SM, et al. Cannabinoids as anti-ROS in aged pancreatic islet cells. Life Sci. Sep 202 ;256:117969. [Crossref]  [PubMed] 
  38. Zińczuk J, Zaręba K, Guzińska-Ustymowicz K, Kędra B, Kemona A, Pryczynicz A. p16, p21, and p53 proteins play an important role in development of pancreatic intraepithelial neoplastic. Ir J Med Sci. 2018;187(3):629-637. [Crossref]  [PubMed] 
  39. Mello SS, Attardi LD. Neat-en-ing up our understanding of p53 pathways in tumor suppression. Cell Cycle. 2018;17(13):1527-1535. [Crossref]  [PubMed]  [PMC] 
  40. Ahmed S, Schwartz C, Dewan MZ, Xu R. The Promising Role of TGF- ?/SMAD4 in Pancreatic Cancer: The future targeted therapy. J Cancer Treat & Diagnosis. 2019;3(2):1-7. [Crossref] 
  41. Douville C, Springer S, Kinde I, et al. Detection of aneuploidy in patients with cancer through amplification of long interspersed nucleotide elements (LINEs). Proc Natl Acad Sci U S A. 2018;115(8):1871-1876. [Crossref]  [PubMed]  [PMC] 
  42. Kim DU. Does the cytogenetic analysis using fluorescence in situ hybridization improve the preoperative diagnostic accuracy of pancreatic ductal adenocarcinoma? Gut Liver. 2020;14(4):397-398. [Crossref]  [PubMed]  [PMC] 
  43. Zafra MP, Parsons MJ, Kim J, et al. An in vivo kras allelic series reveals distinct phenotypes of common oncogenic variants. Cancer Discov. 2020;10(11):1654-1671. [Crossref]  [PubMed]  [PMC] 
  44. Pipinikas CP, Berner AM, Sposito T, Thirlwell C. The evolving (epi)genetic landscape of pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2019;26(9):R519-R544. [Crossref]  [PubMed] 
  45. Sharif S, Ramanathan RK, Potter D, Cieply K, Krasinskas AM. HER2 gene amplification and chromosome 17 copy number do not predict survival of patients with resected pancreatic adenocarcinoma. Dig Dis Sci. 2008;53(11):3026-3032. [Crossref]  [PubMed] 
  46. Han SH, Ryu KH, Kwon AY. The prognostic impact of HER2 genetic and protein expression in pancreatic carcinoma-HER2 protein and gene in pancreatic cancer. Diagnostics (Basel). 2021;11(4):653. [Crossref]  [PubMed]  [PMC] 
  47. Huang Y, Wei J, Fang Y, et al. Prognostic value of AIB1 and EIF5A2 in intravesical recurrence after surgery for upper tract urothelial carcinoma. Cancer Manag Res. Dec 2018;10:6997-7011. [Crossref]  [PubMed]  [PMC] 
  48. Li L, Bao J, Wang H, et al. Upregulation of amplified in breast cancer 1 contributes to pancreatic ductal adenocarcinoma progression and vulnerability to blockage of hedgehog activation. Theranostics. 2021;11(4):1672-1689. [Crossref]  [PubMed]  [PMC] 
  49. Rice A, Del Rio Hernandez A. The mutational landscape of pancreatic and liver cancers, as represented by circulating tumor DNA. Front Oncol. Sep 2019;9:952. [Crossref]  [PubMed]  [PMC] 
  50. Gu Y, Ji Y, Jiang H, Qiu G. Clinical effect of driver mutations of KRAS, CDKN2A/P16, TP53, and SMAD4 in pancreatic cancer: a meta-analysis. Genet Test Mol Biomarkers. 2020;24(12):777-788. [Crossref]  [PubMed] 
  51. Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol. Dec 2019;59:23-35. [Crossref]  [PubMed] 
  52. Pązik M, Michalska K, Żebrowska-Nawrocka M, Zawadzka I, Łochowski M, Balcerczak E. Clinical significance of HRAS and KRAS genes expression in patients with non-small-cell lung cancer - preliminary findings. BMC Cancer. 2021;21(1):130. [Crossref]  [PubMed]  [PMC] 
  53. Fan Z, Fan K, Yang C, et al. Critical role of KRAS mutation in pancreatic ductal adenocarcinoma. Transl Cancer Res. 2018;7(6):1728-1736. [Crossref] 
  54. Terrell EM, Morrison DK. Ras-mediated activation of the Raf family kinases. Cold Spring Harb Perspect Med. 2019;9(1):a033746. [Crossref]  [PubMed]  [PMC] 
  55. Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J. Dec 2019;18:189-198. [Crossref]  [PubMed]  [PMC] 
  56. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):17-33. [Crossref]  [PubMed]  [PMC] 
  57. Lechuga CG, Simón-Carrasco L, Jacob HK, Drosten M. Genetic validation of cell proliferation via Ras-independent activation of the Raf/Mek/Erk pathway. Methods Mol Biol. 2017;1487:269-276. [Crossref]  [PubMed] 
  58. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997-2007. [Crossref]  [PubMed]  [PMC] 
  59. Qi C, Wang X, Shen Z, Chen S, Yu H, Williams N, et al. Anti-mitotic chemotherapeutics promote apoptosis through TL1A-activated death receptor 3 in cancer cells. Cell Res. 2018;28(5):544-555. [Crossref]  [PubMed]  [PMC] 
  60. Forth S, Kapoor TM. The mechanics of microtubule networks in cell division. J Cell Biol. 2017;216(6):1525-1531. [Crossref]  [PubMed]  [PMC] 
  61. Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA. Paclitaxel: What has been done and the challenges remain ahead. Int J Pharm. 2017;526(1-2):474-495. [Crossref]  [PubMed] 
  62. Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. Jun 2019;24:40. [Crossref]  [PubMed]  [PMC] 
  63. Wei Y, Pu X, Zhao L. Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy (Review). Oncol Rep. 2017;37(6):3159-3166. [Crossref]  [PubMed] 
  64. Miller EM, Samec TM, Alexander-Bryant AA. Nanoparticle delivery systems to combat drug resistance in ovarian cancer. Nanomedicine. Jan 2021;31:102309. [Crossref]  [PubMed] 
  65. Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. Aug 2020;7:193. [Crossref]  [PubMed]  [PMC] 
  66. Sharifi-Rad J, Quispe C, Patra JK, et al. Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy. Oxid Med Cell Longev. Oct 2021;2021:3687700. [Crossref]  [PubMed]  [PMC] 
  67. Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609-1623. [Crossref]  [PubMed]  [PMC] 
  68. Cortes J, Saura C. Nanoparticle albumin-bound (nabTM)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur J Cancer Suppl. 2010;8(1):1-10. [Crossref] 
  69. Dent S, Fraser J, Graham N, Campbell M, Hopkins S, Dranitsaris G. Clinical outcomes of women with metastatic breast cancer treated with nab-paclitaxel: experience from a single academic cancer centre. Curr Oncol. 2013;20(1):24-29. [Crossref]  [PubMed]  [PMC] 
  70. Liu M, Liu S, Yang L, Wang S. Comparison between nab-paclitaxel and solvent-based taxanes as neoadjuvant therapy in breast cancer: a systematic review and meta-analysis. BMC Cancer. 2021;21(1):118. [Crossref]  [PubMed]  [PMC] 
  71. Mahtani RL, Parisi M, Glück S, et al. Comparative effectiveness of early-line nab-paclitaxel vs. paclitaxel in patients with metastatic breast cancer: a US community-based real-world analysis. Cancer Manag Res. Feb 2018;10:249-256. [Crossref]  [PubMed]  [PMC] 
  72. Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open. 2022;8(1):12. [Crossref] 
  73. Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for polymers used in ocular drug delivery. Front Med (Lausanne). Jan 2022;8:787644. [Crossref]  [PubMed]  [PMC] 
  74. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688-701. [Crossref]  [PubMed] 
  75. Sharma N, Kumari RM, Gupta N, Syed A, Bahkali AH, Nimesh S. Poly-(lactic-co-glycolic) acid nanoparticles for synergistic delivery of epirubicin and paclitaxel to human lung cancer cells. Molecules. 2020;25(18):4243. [Crossref]  [PubMed]  [PMC] 
  76. Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release. 2000;63(1-2):19-30. [Crossref]  [PubMed] 
  77. Yoshizawa Y, Kono Y, Ogawara K, Kimura T, Higaki K. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int J Pharm. 2011;412(1-2):132-141. [Crossref]  [PubMed] 
  78. Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C Mater Biol Appl. Nov 2018;92:1041-1060. [Crossref]  [PubMed] 
  79. Zhang Z, Wang X, Li B, et al. Paclitaxel-loaded PLGA microspheres with a novel morphology to facilitate drug delivery and antitumor efficiency. RSC Adv. 2018;8(6):3274-3285. [Crossref]  [PubMed]  [PMC] 
  80. Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789. [Crossref]  [PubMed]  [PMC] 
  81. Gorain B, Choudhury H, Pandey M, Kesharwani P. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater Sci Eng C Mater Biol Appl. Oct 2018;91:868-880. [Crossref]  [PubMed] 
  82. Alam T, Khan S, Gaba B, Haider MF, Baboota S, Ali J. Nanocarriers as treatment modalities for hypertension. Drug Deliv. 2017;24(1):358-369. [Crossref]  [PubMed]  [PMC] 
  83. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. [Crossref]  [PubMed]  [PMC] 
  84. Khameneh ES, Amini MM, Kakaei S, Khanchi A. Preparation of dual-modality yttrium-90 radiolabeled nanoparticles for therapeutic investigation. Radiochim Acta. 2018;106(11):897-907. [Crossref] 
  85. Zhang M, Merlin D. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis. Inflamm Bowel Dis. 2018;24(7):1401-1415. [Crossref]  [PubMed]  [PMC] 
  86. Liyanage PY, Hettiarachchi SD, Zhou Y, et al Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer. 2019;1871(2):419-433. [Crossref]  [PubMed]  [PMC] 
  87. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101-124. [Crossref]  [PubMed]  [PMC] 
  88. Jain KK. An Overview of drug delivery systems. Methods Mol Biol. 2020;2059:1-54. [Crossref]  [PubMed] 
  89. Smith SA, Selby LI, Johnston APR, Such GK. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjug Chem. 2019;30(2):263-272. [Crossref]  [PubMed] 
  90. Zhang E, Xing R, Liu S, Qin Y, Li K, Li P. Advances in chitosan-based nanoparticles for oncotherapy. Carbohydr Polym. Oct 2019;222:115004. [Crossref]  [PubMed] 
  91. Kopeckova K, Eckschlager T, Sirc J, Hobzova R, Plch J, Hrabeta J, et al. Nanodrugs used in cancer therapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019;163(2):122-131. [Crossref]  [PubMed] 
  92. Matsui H, Hazama S, Shindo Y, Nagano H. Combination treatment of advanced pancreatic cancer using novel vaccine and traditional therapies. Expert Rev Anticancer Ther. 2018;18(12):1205-1217. [Crossref]  [PubMed] 
  93. Borgå O, Lilienberg E, Bjermo H, Hansson F, Heldring N, Dediu R. Pharmacokinetics of total and unbound paclitaxel after administration of paclitaxel micellar or nab-paclitaxel: an open, randomized, cross-over, explorative study in breast cancer patients. Adv Ther. 2019;36(10):2825-2837. [Crossref]  [PubMed]  [PMC] 
  94. Aronson JK. Meyler's Side Effects of Drugs. Arason JK. The International Encyclopedia of Adverse Drugre Actions and Interactions. 16th ed. Amsterdam: Elsevier Science; 2016. p.445-52.
  95. Li Q, Zhang H, Zhu X, et al. Tolerance, variability and pharmacokinetics of albumin-bound paclitaxel in Chinese breast cancer patients. Front Pharmacol. Nov 2018;9:1372. [Crossref]  [PubMed]  [PMC] 
  96. Giordano G, Pancione M, Olivieri N, et al. Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions. World J Gastroenterol. 2017;23(32):5875-5886. [Crossref]  [PubMed]  [PMC] 
  97. Rafiei P, Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomedicine. Jan 2017;12:935-947. [Crossref]  [PubMed]  [PMC] 
  98. Jiang G, Jia H, Qiu J, et al. PLGA Nanoparticle platform for trans-ocular barrier to enhance drug delivery: a comparative study based on the application of oligosaccharides in the outer membrane of carriers. Int J Nanomedicine. Nov 2020;15:9373-9387. [Crossref]  [PubMed]  [PMC] 
  99. Talmadge E King. Paclitaxel (Taxol) | Cancer information | Cancer Research UK. 2019. Accessed on 16 April 2022. [Link] 
  100. Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: an updated literature review. Clin Pharmacokinet. 2018;57(1):7-19. [Crossref]  [PubMed]  [PMC] 
  101. Specenier P. Efficacy of nab-paclitaxel in treating metastatic melanoma. Expert Opin Pharmacother. 2019;20(5):495-500. [Crossref]  [PubMed] 
  102. Adrianzen Herrera D, Ashai N, Perez-Soler R, Cheng H. Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: an evaluation of the clinical evidence. Expert Opin Pharmacother. 2019;20(1):95-102. [Crossref]  [PubMed] 
  103. Zong Y, Wu J, Shen K. Nanoparticle albumin-bound paclitaxel as neoadjuvant chemotherapy of breast cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(10):17360-17372. [Crossref]  [PubMed]  [PMC] 
  104. Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23(31):7794-7803. [Crossref]  [PubMed] 
  105. Xu Y, Kim CS, Saylor DM, Koo D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater. 2017;105(6):1692-1716. [Crossref]  [PubMed] 
  106. Von Hoff DD, Ramanathan RK, Borad MJ, et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol. 2011;29(34):4548-4554. [Crossref]  [PubMed]  [PMC] 
  107. Shetty A, Nagesh PKB, Setua S, et al. Novel Paclitaxel Nanoformulation impairs de novo lipid synthesis in pancreatic cancer cells and enhances gemcitabine efficacy. ACS Omega. 2020;5(15):8982-8991. [Crossref]  [PubMed]  [PMC]