Potential Applications of Photobiomodulation in Combinatorial Cancer Therapy: Developments in Diagnosis and Treatment
Received Date : 30 Aug 2023
Accepted Date : 26 Nov 2023
Available Online : 13 Dec 2023
Doi: 10.37047/jos.2023-99295 - Article's Language: EN
Journal of Oncological Sciences. 2024;10(1):47-59.
This is an open access article under the CC BY-NC-ND license
Objective: Over the last two decades, the potential applications of photobiomodulation therapy (PBMT) have garnered increasing attention. The mechanism of PBMT involves the absorption of light energy by cellular components, such as chromophores. This absorption initiates a cascade of biochemical reactions, including cellular signaling pathways, gene expression, and the production of various molecules such as reactive oxygen species, adenosine triphosphate, and growth factors. In this review, we aimed to investigate the potential applications of PBMT when combined with chemotherapy (CT), radiotherapy (RT), and immunotherapy. Material and Methods: PubMed (National Library of Medicine, ABD), Scopus (Elsevier, Hollanda), and Google Scholar (Google, ABD) were searched to obtain data. Results: Based on the results of in vitro and in vivo studies, PBMT acts as a chemo- and radio-sensitizer. It facilitates dose reduction and, notably, does not decrease but may increase the viability of noncancer cells. This property enables the protection of noncancerous cells against antineoplastic CT-related toxicity. The important factor in effectively employing PBMT for cancer treatment depends on selecting the correct dosage, including wavelength, power density, energy density, and exposure time. The accumulating evidence supporting the benefits of PBMT has led to its recommendation by the World Association for Laser Therapy for managing CT-related adverse effects. Conclusion: PBMT is a promising strategy for the combination therapy of cancer. Nevertheless, further studies are warranted to establish the precise protocols for PBMT. These studies are essential to address its limitations and uncover the benefits of light therapy that have not yet been fully explored.
  1. Scientific Committee on Emerging and Newly Identified Health Risks. Health Effects of Artificial Light.; 2012. Accessed: 14 December 2023 [Link] 
  2. Scientific Committee on Emerging and Newly-Identified Health Risks. Scientific Opinion on Light Sensitivity.; 2008. [Link] 
  3. Liebert A, Kiat H. The history of light therapy in hospital physiotherapy and medicine with emphasis on Australia: Evolution into novel areas of practice. Physiother Theory Pract. 2021;37(3):389-400. [Crossref]  [PubMed] 
  4. Abdel-Kader MH. The journey of PDT throughout history: PDT from pharos to present. In: Kostron H, Tayyaba H, eds. Comprehensive Series in Photochemical & Photobiological Sciences Photodynamic Medicine: From Bench to Clinic. 1st ed. Royal Society of Chemistry; 2016. p.1-21. [Crossref] 
  5. Roelandts R. The history of phototherapy: something new under the sun? J Am Acad Dermatol. 2002;46(6):926-930. [Crossref]  [PubMed] 
  6. Grzybowski A, Sak J, Pawlikowski J. A brief report on the history of phototherapy. Clin Dermatol. 2016;34(5):532-537. [Crossref]  [PubMed] 
  7. THOR [Internet]. © 2023 THOR Photomedicine Ltd All Rights [Cited: ]. Pubmed to adopt "Photobiomodulation Therapy" as a MeSH term. Cited: 14.12.2023 Available from: [Link] 
  8. Aghajanzadeh M, Zamani M, Rajabi Kouchi F, et al. Synergic antitumor effect of photodynamic therapy and chemotherapy mediated by nano drug delivery systems. Pharmaceutics. 2022;14(2):322. [Crossref]  [PubMed]  [PMC] 
  9. Tam SY, Tam VCW, Ramkumar S, Khaw ML, Law HKW, Lee SWY. Review on the Cellular Mechanisms of Low-Level Laser Therapy Use in Oncology. Front Oncol. Jul 2020;10:1255. [Crossref]  [PubMed]  [PMC] 
  10. Montes de Oca Balderas P. Mitochondria-plasma membrane interactions and communication. J Biol Chem. 2021;297(4):101164. [Crossref]  [PubMed]  [PMC] 
  11. Santucci R, Sinibaldi F, Cozza P, Polticelli F, Fiorucci L. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. Int J Biol Macromol. Sep 2019;136:1237-1246. [Crossref]  [PubMed] 
  12. Tucker LD, Lu Y, Dong Y, et al. Photobiomodulation Therapy Attenuates Hypoxic-Ischemic Injury in a Neonatal Rat Model. J Mol Neurosci. 2018;65(4):514-526. [Crossref]  [PubMed]  [PMC] 
  13. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358-383. [Crossref]  [PubMed]  [PMC] 
  14. Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008;84(5):1091-1099. [Crossref]  [PubMed] 
  15. Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR. Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol. 201855(8):6601-6636. [Crossref]  [PubMed]  [PMC] 
  16. Yadav A, Gupta A, Keshri GK, Verma S, Sharma SK, Singh SB. Photobiomodulatory effects of superpulsed 904nm laser therapy on bioenergetics status in burn wound healing. J Photochem Photobiol B. Sep 2016;162:77-85. [Crossref]  [PubMed] 
  17. Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017;4(3):337-361. [Crossref]  [PubMed]  [PMC] 
  18. Kasprzyk-Kucewicz T, Szurko A, Stanek A, Sieroń K, Morawiec T, Cholewka A. Usefulness in developing an optimal training program and distinguishing between performance levels of the athlete's body by using of thermal imaging. Int J Environ Res Public Health. 2020;17(16):5698. [Crossref]  [PubMed]  [PMC] 
  19. Ferraresi C, de Sousa MV, Huang YY, Bagnato VS, Parizotto NA, Hamblin MR. Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci. 2015;30(4):1259-1267. [Crossref]  [PubMed] 
  20. Shefer G, Oron U, Irintchev A, Wernig A, Halevy O. Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol. 2001;187(1):73-80. [Crossref]  [PubMed] 
  21. Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol. 2007;127(8):2048-2057. [Crossref]  [PubMed] 
  22. Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381-1478. [Crossref]  [PubMed] 
  23. Zhang J, Xing D, Gao X. Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol. 2008;217(2):518-528. [Crossref]  [PubMed] 
  24. Chen AC, Arany PR, Huang YY, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011;6(7):e22453. [Crossref]  [PubMed]  [PMC] 
  25. Kopp-Scheinpflug C, Forsythe ID. Nitric oxide signaling in the auditory pathway. Front Neural Circuits. Oct 2021;15:759342. [Crossref]  [PubMed]  [PMC] 
  26. Mitchell UH, Mack GL. Low-level laser treatment with near-infrared light increases venous nitric oxide levels acutely: a single-blind, randomized clinical trial of efficacy. Am J Phys Med Rehabil. 2013;92(2):151-156. [Crossref]  [PubMed] 
  27. Karu TI, Pyatibrat LV, Afanasyeva NI. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med. 2005;36(4):307-314. [Crossref]  [PubMed] 
  28. Tuby H, Maltz L, Oron U. Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg Med. 2006;38(7):682-688. [Crossref]  [PubMed] 
  29. Karu TI, Pyatibrat LV, Kalendo GS. Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci. 2004;3(2):211-216. [Crossref]  [PubMed] 
  30. Lubart R, Friedmann H, Sinyakov M, Cohen N, Breitbart H. Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation. Lasers Surg Med. 1997;21(5):493-499. [Crossref]  [PubMed] 
  31. Abdel-Magied N, Elkady AA, Abdel Fattah SM. Effect of low-level laser on some metals related to redox state and histological alterations in the liver and kidney of irradiated rats. Biol Trace Elem Res. 2020;194(2):410-422. [Crossref]  [PubMed] 
  32. Harraz OF, Jensen LJ. Vascular calcium signalling and ageing. J Physiol. 2021;599(24):5361-5377. [Crossref]  [PubMed]  [PMC] 
  33. Santos Hde L, Rigos CF, Tedesco AC, Ciancaglini P. Biostimulation of Na,K-ATPase by low-energy laser irradiation (685 nm, 35 mW): comparative effects in membrane, solubilized and DPPC:DPPE-liposome reconstituted enzyme. J Photochem Photobiol B. 2007;89(1):22-28. [Crossref]  [PubMed] 
  34. Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci. 2019;20(11):2767. [Crossref]  [PubMed]  [PMC] 
  35. Nouruzian M, Alidoust M, Bayat M, Bayat M, Akbari M. Effect of low-level laser therapy on healing of tenotomized Achilles tendon in streptozotocin-induced diabetic rats. Lasers Med Sci. 2013;28(2):399-405. [Crossref]  [PubMed] 
  36. Dang Y, Liu B, Liu L, et al. The 800-nm diode laser irradiation induces skin collagen synthesis by stimulating TGF-β/Smad signaling pathway. Lasers Med Sci. 2011;26(6):837-843. [Crossref]  [PubMed] 
  37. de Oliveira TS, Serra AJ, Manchini MT, et al. Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci. 2015;30(1):217-223. [Crossref]  [PubMed] 
  38. Silveira PC, Scheffer Dda L, Glaser V, et al. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res. 2016;50(5):503-513. [Crossref]  [PubMed] 
  39. Gaptulbarova KA, Tsyganov MM, Pevzner AM, Ibragimova MK, Litviakov NV. NF-kB as a potential prognostic marker and a candidate for targeted therapy of cancer. Exp Oncol. 2020;42(4):263-269. [Crossref]  [PubMed] 
  40. Ji Y, Li M, Chang M, et al. Inflammation: Roles in Skeletal Muscle Atrophy. Antioxidants (Basel). 2022;11(9):1686. [Crossref]  [PubMed]  [PMC] 
  41. Rizzi CF, Mauriz JL, Freitas Corrêa DS, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med. 2006;38(7):704-713. [Crossref]  [PubMed] 
  42. Tamura A, Matsunobu T, Tamura R, Kawauchi S, Sato S, Shiotani A. Photobiomodulation rescues the cochlea from noise-induced hearing loss via upregulating nuclear factor κB expression in rats. Brain Res. Sep 2016;1646:467-474. [Crossref]  [PubMed] 
  43. Yin K, Zhu R, Wang S, Zhao RC. Low level laser (LLL) attenuate LPS-induced inflammatory responses in mesenchymal stem cells via the suppression of NF-κB signaling pathway in vitro. PLoS One. 2017;12(6):e0179175. [Crossref]  [PubMed]  [PMC] 
  44. Chang H, Zou Z, Li J, et al. Photoactivation of mitochondrial reactive oxygen species-mediated Src and protein kinase C pathway enhances MHC class II-restricted T cell immunity to tumours. Cancer Lett. Dec 2021;523:57-71. [Crossref]  [PubMed] 
  45. Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci. 2021;78(24):8001-8047. [Crossref]  [PubMed] 
  46. Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X. Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J Cell Physiol. 2006;206(2):441-448. [Crossref]  [PubMed] 
  47. Rola P, Włodarczak S, Lesiak M, Doroszko A, Włodarczak A. Changes in cell biology under the influence of low-level laser therapy. Photonics. 2022;9(7):502. [Crossref] 
  48. Mai NNH, Yamaguchi Y, Choijookhuu N, et al. Photodynamic therapy using a novel phosphorus tetraphenylporphyrin induces an anticancer effect via Bax/Bcl-xL-related mitochondrial apoptosis in biliary cancer cells. Acta Histochem Cytochem. 2020;53(4):61-72. [Crossref]  [PubMed]  [PMC] 
  49. Movahedi MM, Alamzadeh Z, Hosseini-Nami S, et al. Investigating the mechanisms behind extensive death in human cancer cells following nanoparticle assisted photo-thermo-radiotherapy. Photodiagnosis Photodyn Ther. Mar 2020;29:101600. [Crossref]  [PubMed] 
  50. Li Y, Xu Y, Peng X, Huang J, Yang M, Wang X. A novel photosensitizer Znln2S4 mediated photodynamic therapy induced-HepG2 cell apoptosis. Radiat Res. 2019;192(4):422-430. [Crossref]  [PubMed] 
  51. Cho H, Zheng H, Sun Q, et al. Development of novel photosensitizer using the Buddleja officinalis extract for head and neck cancer. Evid Based Complement Alternat Med. Jun 2018;2018:6917590. [Crossref]  [PubMed]  [PMC] 
  52. Buytaert E, Callewaert G, Hendrickx N, et al. Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J. 2006;20(6):756-758. [Crossref]  [PubMed] 
  53. Chiu SM, Xue LY, Usuda J, Azizuddin K, Oleinick NL. Bax is essential for mitochondrion-mediated apoptosis but not for cell death caused by photodynamic therapy. Br J Cancer. 2003;89(8):1590-1597. [Crossref]  [PubMed]  [PMC] 
  54. Granville DJ, Shaw JR, Leong S, et al. Release of cytochrome c, Bax migration, Bid cleavage, and activation of caspases 2, 3, 6, 7, 8, and 9 during endothelial cell apoptosis. Am J Pathol. 1999;155(4):1021-1025. [Crossref]  [PubMed]  [PMC] 
  55. Srivastava M, Ahmad N, Gupta S, Mukhtar H. Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF 1 cells to photodynamic therapy apoptosis. J Biol Chem. 2001;276(18):15481-15488. [Crossref]  [PubMed] 
  56. Huis In 't Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics. 2023;15(2):330. [Crossref]  [PubMed]  [PMC] 
  57. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1-21. [Crossref]  [PubMed] 
  58. Kessel D, Luo Y, Deng Y, Chang CK. The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol. 1997;65(3):422-426. [Crossref]  [PubMed]  [PMC] 
  59. Agostinis P, Buytaert E, Breyssens H, Hendrickx N. Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci. 2004;3(8):721-729. [Crossref]  [PubMed] 
  60. Almeida RD, Manadas BJ, Carvalho AP, Duarte CB. Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta. 2004;1704(2):59-86. [Crossref]  [PubMed] 
  61. Hsieh YJ, Wu CC, Chang CJ, Yu JS. Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol. 2003;194(3):363-375. [Crossref]  [PubMed] 
  62. Fabris C, Valduga G, Miotto G, et al. Photosensitization with zinc (II) phthalocyanine as a switch in the decision between apoptosis and necrosis. Cancer Res. 2001;61(20):7495-7500. [PubMed] 
  63. Lam M, Oleinick NL, Nieminen AL. Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem. 2001;276(50):47379-47386. [Crossref]  [PubMed] 
  64. Minamikawa T, Sriratana A, Williams DA, Bowser DN, Hill JS, Nagley P. Chloromethyl-X-rosamine (MitoTracker Red) photosensitises mitochondria and induces apoptosis in intact human cells. J Cell Sci. 1999;112 ( Pt 14):2419-2430. [Crossref]  [PubMed] 
  65. Chaloupka R, Petit PX, Israël N, Sureau F. Over-expression of Bcl-2 does not protect cells from hypericin photo-induced mitochondrial membrane depolarization, but delays subsequent events in the apoptotic pathway. FEBS Lett. 1999;462(3):295-301. [Crossref]  [PubMed] 
  66. Chiu SM, Oleinick NL. Dissociation of mitochondrial depolarization from cytochrome c release during apoptosis induced by photodynamic therapy. Br J Cancer. 2001;84(8):1099-1106. [Crossref]  [PubMed]  [PMC] 
  67. Belzacq AS, Jacotot E, Vieira HL, et al. Apoptosis induction by the photosensitizer verteporfin: identification of mitochondrial adenine nucleotide translocator as a critical target. Cancer Res. 2001;61(4):1260-1264. [PubMed] 
  68. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26(7):1749-1760. Erratum in: EMBO J. 2019;38(10): [Crossref]  [PubMed]  [PMC] 
  69. Xue LY, Chiu SM, Azizuddin K, Joseph S, Oleinick NL. The death of human cancer cells following photodynamic therapy: apoptosis competence is necessary for Bcl-2 protection but not for induction of autophagy. Photochem Photobiol. 2007;83(5):1016-1023. [Crossref]  [PubMed] 
  70. Kessel D, Vicente MG, Reiners JJ Jr. Initiation of apoptosis and autophagy by photodynamic therapy. Lasers Surg Med. 2006;38(5):482-488. [Crossref]  [PubMed]  [PMC] 
  71. Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 2007;17(9):422-427. [Crossref]  [PubMed] 
  72. Sasnauskiene A, Kadziauskas J, Vezelyte N, Jonusiene V, Kirveliene V. Apoptosis, autophagy and cell cycle arrest following photodamage to mitochondrial interior. Apoptosis. 2009;14(3):276-286. [Crossref]  [PubMed] 
  73. Firczuk M, Nowis D, Gołąb J. PDT-induced inflammatory and host responses. Photochem Photobiol Sci. 2011;10(5):653-663. [Crossref]  [PubMed] 
  74. Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta. 2010;1805(1):53-71. [Crossref]  [PubMed] 
  75. Yang H, Ma Y, Chen G, et al. Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology. 2016;5(6):e1149673. [Crossref]  [PubMed]  [PMC] 
  76. Aaes TL, Kaczmarek A, Delvaeye T, et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep. 2016;15(2):274-287. [Crossref]  [PubMed] 
  77. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. Nov 2013;31:51-72. [Crossref]  [PubMed] 
  78. Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54-61. [Crossref]  [PubMed] 
  79. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191-195. Erratum in: Nature. 2010;467(7315):622. [Crossref]  [PubMed] 
  80. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860-875. [Crossref]  [PubMed] 
  81. Panzarini E, Inguscio V, Fimia GM, Dini L. Rose Bengal acetate photodynamic therapy (RBAc-PDT) induces exposure and release of Damage-Associated Molecular Patterns (DAMPs) in human HeLa cells. PLoS One. 2014;9(8):e105778. [Crossref]  [PubMed]  [PMC] 
  82. Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012;31(5):1062-1079. [Crossref]  [PubMed]  [PMC] 
  83. Korbelik M. PDT-associated host response and its role in the therapy outcome. Lasers Surg Med. 2006;38(5):500-508. [Crossref]  [PubMed] 
  84. Huis In 't Veld RV, Da Silva CG, Jager MJ, Cruz LJ, Ossendorp F. Combining photodynamic therapy with immunostimulatory nanoparticles elicits effective anti-tumor immune responses in preclinical murine models. Pharmaceutics. 2021;13(9):1470. [Crossref]  [PubMed]  [PMC] 
  85. Li W, Yang J, Luo L, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun. 2019;10(1):3349. [Crossref]  [PubMed]  [PMC] 
  86. Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 2005;65(3):1018-1026. [Crossref]  [PubMed] 
  87. Riteau N, Baron L, Villeret B, et al. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis. 2012;3(10):e403. [Crossref]  [PubMed]  [PMC] 
  88. Sun J, Cecic I, Parkins CS, Korbelik M. Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours. Photochem Photobiol Sci. 2002;1(9):690-695. [Crossref]  [PubMed] 
  89. Lobo ACS, Gomes-da-Silva LC, Rodrigues-Santos P, Cabrita A, Santos-Rosa M, Arnaut LG. Immune responses after vascular photodynamic therapy with redaporfin. J Clin Med. 2019;9(1):104. [Crossref]  [PubMed]  [PMC] 
  90. Krosl G, Korbelik M, Dougherty GJ. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br J Cancer. 1995;71(3):549-55. [Crossref]  [PubMed]  [PMC] 
  91. de Vree WJ, Fontijne-Dorsman AN, Koster JF, Sluiter W. Photodynamic treatment of human endothelial cells promotes the adherence of neutrophils in vitro. Br J Cancer. 1996;73(11):1335-1340. [Crossref]  [PubMed]  [PMC] 
  92. Kabingu E, Vaughan L, Owczarczak B, Ramsey KD, Gollnick SO. CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells. Br J Cancer. 2007;96(12):1839-1848. [Crossref]  [PubMed]  [PMC] 
  93. Gollnick SO, Brackett CM. Enhancement of anti-tumor immunity by photodynamic therapy. Immunol Res. 2010;46(1-3):216-226. [Crossref]  [PubMed]  [PMC] 
  94. Wang X, Ji J, Zhang H, et al. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. Oncotarget. 2015;6(42):44688-446702. [Crossref]  [PubMed]  [PMC] 
  95. Zheng Y, Yin G, Le V, et al. Photodynamic-therapy activates immune response by disrupting immunity homeostasis of tumor cells, which generates vaccine for cancer therapy. Int J Biol Sci. 2016;12(1):120-132. [Crossref]  [PubMed]  [PMC] 
  96. Ji J, Fan Z, Zhou F, et al. Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma. Oncotarget. 2015;6(19):17135-17146. [Crossref]  [PubMed]  [PMC] 
  97. Zhang H, Wang P, Wang X, et al. Antitumor effects of DC vaccine with ALA-PDT-induced immunogenic apoptotic cells for skin squamous cell carcinoma in mice. Technol Cancer Res Treat. Jan 2018;17:1533033818785275. [Crossref]  [PubMed]  [PMC] 
  98. Baert T, Garg AD, Vindevogel E, et al. In vitro generation of murine dendritic cells for cancer immunotherapy: an optimized protocol. Anticancer Res. 2016;36(11):5793-5801. [Crossref]  [PubMed] 
  99. Trempolec N, Doix B, Degavre C, et al. Photodynamic therapy-based dendritic cell vaccination suited to treat peritoneal mesothelioma. Cancers (Basel). 2020;12(3):545. [Crossref]  [PubMed]  [PMC] 
  100. Jalili A, Makowski M, Switaj T, et al. Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res. 2004;10(13):4498-4508. [Crossref]  [PubMed] 
  101. Kleinovink JW, van Driel PB, Snoeks TJ, et al. Combination of photodynamic therapy and specific immunotherapy efficiently eradicates established tumors. Clin Cancer Res. 2016;22(6):1459-1468. [Crossref]  [PubMed] 
  102. Kleinovink JW, Fransen MF, Löwik CW, Ossendorp F. Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8+ T cells. Cancer Immunol Res. 2017;5(10):832-838. [Crossref]  [PubMed] 
  103. Preise D, Oren R, Glinert I, et al. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol Immunother. 2009;58(1):71-84. [Crossref]  [PubMed] 
  104. Diniz IMA, Souto GR, Freitas IDP, et al. Photobiomodulation enhances cisplatin cytotoxicity in a culture model with oral cell lineages. Photochem Photobiol. 2020;96(1):182-190. [Crossref]  [PubMed] 
  105. Javaheri B, Esmaeeli Djavid G, Parivar K, Hekmat A. Effect of low-level laser therapy and sinensetin (Combination therapy) on tumor cells (Hela) and normal cells (CHO). J Lasers Med Sci. Dec 2021;12:e85. [Crossref]  [PubMed]  [PMC] 
  106. Zafari J, Abbasinia H, Gharehyazi H, Javani Jouni F, Jamali S, Razzaghi M. Evaluation of biological activity of different wavelengths of low-level laser therapy on the cancer prostate cell line compared with cisplatin. J Lasers Med Sci. May 2021;12:e17. [Crossref]  [PubMed]  [PMC] 
  107. de Faria CMG, Barrera-Patiño CP, Santana JPP, da Silva de Avó LR, Bagnato VS. Tumor radiosensitization by photobiomodulation. J Photochem Photobiol B. Dec 2021;225:112349. [Crossref]  [PubMed] 
  108. Stefenon L, Boasquevisque M, Garcez AS, et al. Autophagy upregulation may explain inhibition of oral carcinoma in situ by photobiomodulation in vitro. J Photochem Photobiol B. Aug 2021;221:112245. [Crossref]  [PubMed] 
  109. Dias Schalch T, Porta Santos Fernandes K, Costa-Rodrigues J, et al. Photomodulation of the osteoclastogenic potential of oral squamous carcinoma cells. J Biophotonics. 2016;9(11-12):1136-1147. [Crossref]  [PubMed] 
  110. Ibarra AMC, Garcia MP, Ferreira M, et al. Effects of photobiomodulation on cellular viability and cancer stem cell phenotype in oral squamous cell carcinoma. Lasers Med Sci. 2021;36(3):681-690. [Crossref]  [PubMed] 
  111. Xia Y, Yu W, Cheng F, et al. Photobiomodulation With Blue Laser Inhibits Bladder Cancer Progression. Front Oncol. Oct 2021;11:701122. [Crossref]  [PubMed]  [PMC] 
  112. Courtois E, Guy JB, Axisa F, et al. Photobiomodulation by a new optical fiber device: analysis of the in vitro impact on proliferation/migration of keratinocytes and squamous cell carcinomas cells stressed by X-rays. Lasers Med Sci. 2021;36(7):1445-1454. [Crossref]  [PubMed] 
  113. Kara C, Selamet H, Gökmenoğlu C, Kara N. Low level laser therapy induces increased viability and proliferation in isolated cancer cells. Cell Prolif. 2018;51(2):e12417. [Crossref]  [PubMed]  [PMC] 
  114. Ramos Silva C, Cabral FV, de Camargo CF, et al. Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure. J Biophotonics. 2016;9(11-12):1157-1166. [Crossref]  [PubMed] 
  115. Gonçalves de Faria CM, Ciol H, Salvador Bagnato V, Pratavieira S. Effects of photobiomodulation on the redox state of healthy and cancer cells. Biomed Opt Express. 2021;12(7):3902-3916. [Crossref]  [PubMed]  [PMC] 
  116. Heymann PG, Mandic R, Kämmerer PW, et al. Laser-enhanced cytotoxicity of zoledronic acid and cisplatin on primary human fibroblasts and head and neck squamous cell carcinoma cell line UM-SCC-3. J Craniomaxillofac Surg. 2014;42(7):1469-1474. [Crossref]  [PubMed] 
  117. Djavid GE, Bigdeli B, Goliaei B, Nikoofar A, Hamblin MR. Photobiomodulation leads to enhanced radiosensitivity through induction of apoptosis and autophagy in human cervical cancer cells. J Biophotonics. 2017;10(12):1732-1742. [Crossref]  [PubMed]  [PMC] 
  118. de Lima RDN, Vieira SS, Antonio EL, et al. Low-level laser therapy alleviates the deleterious effect of doxorubicin on rat adipose tissue-derived mesenchymal stem cells. J Photochem Photobiol B. Jul 2019;196:111512. [Crossref]  [PubMed] 
  119. Seragel-Deen F, Abdel Ghani SA, Baghdadi HM, Saafan AM. Combined cisplatin treatment and photobiomodulation at high fluence induces cytochrome c release and cytomorphologic alterations in HEp-2 cells. Open Access Maced J Med Sci. 2020;8(A):366-373. [Crossref] 
  120. Aniogo EC, George BP, Abrahamse H. Photobiomodulation improves anti-tumor efficacy of photodynamic therapy against resistant MCF-7 cancer cells. Biomedicines. 2023;11(6):1547. [Crossref]  [PubMed]  [PMC] 
  121. Bensadoun RJ, Epstein JB, Nair RG, et al; World Association for Laser Therapy (WALT). Safety and efficacy of photobiomodulation therapy in oncology: A systematic review. Cancer Med. 2020;9(22):8279-8300. [Crossref]  [PubMed]  [PMC] 
  122. Wikramanayake TC, Villasante AC, Mauro LM, et al. Low-level laser treatment accelerated hair regrowth in a rat model of chemotherapy-induced alopecia (CIA). Lasers Med Sci. 2013;28(3):701-706. [Crossref]  [PubMed] 
  123. Abe M, Fujisawa K, Suzuki H, Sugimoto T, Kanno T. Role of 830 nm low reactive level laser on the growth of an implanted glioma in mice. Keio J Med. 1993;42(4):177-179. [Crossref]  [PubMed] 
  124. de C Monteiro JS, de Oliveira SC, Reis Júnior JA, et al. Effects of imiquimod and low-intensity laser (λ660 nm) in chemically induced oral carcinomas in hamster buccal pouch mucosa. Lasers Med Sci. 2013;28(3):1017-1024. [Crossref]  [PubMed] 
  125. Katagiri W, Yokomizo S, Ishizuka T, et al. Dual near-infrared II laser modulates the cellular redox state of T cells and augments the efficacy of cancer immunotherapy. FASEB J. 2022;36(10):e22521. [Crossref]  [PubMed]  [PMC] 
  126. Robijns J, Nair RG, Lodewijckx J, et al. Photobiomodulation therapy in management of cancer therapy-induced side effects: WALT position paper 2022. Front Oncol. Aug 2022;12:927685. [Crossref]  [PubMed]  [PMC] 
  127. Elad S, Cheng KKF, Lalla RV, et al; Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO). MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2020;126(19):4423-4431. Erratum in: Cancer. 2021;127(19):3700. [Crossref]  [PubMed]  [PMC] 
  128. Adnan A, Yaroslavsky AN, Carroll JD, et al. The path to an evidence-based treatment protocol for extraoral photobiomodulation therapy for the prevention of oral mucositis. Front Oral Health. Jul 2021;2:689386. [Crossref]  [PubMed]  [PMC] 
  129. Patel P, Robinson PD, Baggott C, et al. Clinical practice guideline for the prevention of oral and oropharyngeal mucositis in pediatric cancer and hematopoietic stem cell transplant patients: 2021 update. Eur J Cancer. Sep 2021;154:92-101. [Crossref]  [PubMed]