
 BRIEF HISTORY OF LIGHT THERAPY 
Electromagnetic energy encompasses a broad spec-
trum with frequencies ranging from below 1 hertz to 
above 1025 hertz. Within this electromagnetic spec-
trum, the human eye can only detect a narrow band of 
380 nm to 750 nm (Figure 1). The human body can 
interact with electromagnetic energy in diverse ways, 
such as by modulating physiological functions or ini-
tiating pathological outcomes. Electromagnetic 
waves are reflected, transmitted through, or absorbed, 
based on their wavelengths and the composition of 
the biological system. Ultraviolet (UV), visible, and 
infrared (IR) bands are either reflected from the body 

surface or penetrate through the skin and eyes. Based 
on their wavelengths, the penetrating waves can be 
absorbed by certain tissue components. UV radiation 
can be absorbed by organic molecules, such as pro-
tein, lipids, and DNA; visible radiation can be ab-
sorbed by pigments and blood; and IR radiation can 
be absorbed by water. While some UV-mediated 
photochemical reactions are beneficial for the human 
body, such as light absorbed by the retinal photore-
ceptors resulting in electrical signals for visual pro-
cessing or the conversion of 7-dehydrocholesterol to 
pre-cholecalciferol (pre-vitamin D3) in the skin when 
exposed to UV, UV exposure is usually harmful to 
the skin and the eyes.1,2  
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The history of light therapy dates back to the 14th 
century BC. In ancient civilizations of Egypt, China, 
Greece, India, and Rome, plant extracts (such as Pso-
ralea corylifolia, Ammi majus, parsnip, parsley, and 
Saint John’s wort) followed by exposure to sunlight 
(heliotherapy) were used to treat disorders, such as 
vitiligo, psoriasis, rickets, skin cancer, and psy-
chosis.3,4 The health benefits of light therapy were ap-
preciated gradually during history. The pioneering 
studies of the 19th and 20th centuries report the use of 
sunlight- or UV-based artificial light, such as carbon 
arc lamp and quartz lamp therapies for peritoneal and 
cutaneous tuberculosis, nonneoplastic and neoplastic 
skin disorders (such as acne, vitiligo, psoriasis, 
prurigo, syphilis, leprosy, pellagra, cutaneous T-cell 
lymphoma, and superficial basal cell carcinoma), 
venous leg ulcers, wound healing, and neonatal 
jaundice.5,6 The novel applications of photobiomod-
ulation therapy (PBMT) are now available or under 
development. In this review, we have discussed the 
mechanism of action of photobiomodulation and  
its potential applications in combination with 
chemotherapy (CT), immunotherapy, or radiother-
apy (RT) for treating cancer.  

 DEFINITIONS OF PHOTOBIOMODULATION  
AND PHOTODYNAMIC THERAPIES 

Today, light therapy is known as PBMT and photo-
dynamic therapy (PDT). In the Conference of The 
North American Association for Laser Therapy and 
the World Association for Laser Therapy (WALT) in 
2014, PBMT was included as an official MeSH term 

under low-level light therapy (LLLT). After resolving 
the nomenclature conflict, PBMT was defined as 
“The therapeutic use of light, such as visible, near-
IR, IR, absorbed by endogenous chromophores, trig-
gering non-thermal, non-cytotoxic, and biological 
reactions through photochemical or photophysical 
events, causing physiological changes”.7 The param-
eters employed in PBMT are usually within the range 
of 600-1000 nm with a power density of 5-150 
mW/cm2. However, in PDT, a specific wavelength of 
light is used to activate a photosensitizer (PS) agent, 
which can kill cancer cells by inducing oxidative 
stress, cell necrosis, cell damage, and cell apoptosis. 
PSs can also be used as carriers to deliver chemother-
apeutics to the tumor site to obtain a synergistic ther-
apeutic effect.8 

 MOLECULAR MECHANISMS  
UNDERLYING PBMT  

Light energy is used in PBMT to stimulate cellular 
processes and promote various biological effects. It 
typically involves the use of low-level laser devices 
to target tissues. The mechanism underlying photo-
biomodulation involves the absorption of light energy 
by cellular components, including chromophores, 
which trigger a cascade of biochemical reactions. 
These reactions can affect cellular signaling path-
ways, gene expression, and the production of various 
molecules, such as reactive oxygen species (ROS), 
adenosine triphosphate (ATP), and growth factors. 
The precise mechanisms and pathways involved can 
depend on various factors, such as the specific pa-
rameters of the light used, the target tissue, and the 
desired therapeutic outcomes (Figure 2). 

MOLECULAR MECHANISMS OF ACTION OF  
PBMT ON CELLULAR PROCESSES 
Two key characteristics of photobiomodulation are 
assumed to exhibit significant cellular effects. First, 
wavelengths ranging from 600 nm-1070 nm exhibit 
the most remarkable effect on promoting cell prolif-
eration, which is likely due to their light absorption 
properties.9 Second, energy density plays an impor-
tant role as well. Low energy density can stimulate 
cell proliferation, whereas high-energy density in-
creases apoptotic processes. The data obtained from 

FIGURE 1: Electromagnetic spectrum and the range of PBMT.  
PBMT: Photobiomodulation therapy; VLF: Very low frequency; LF: Low frequency; 
MF: Medium frequency; HF: High frequency; VHF: Very high frequency; UHF: Ultra-
high frequency; SHF: Super high frequency; EHF: Extremely high frequency (mo-
dified from https://www.nasa.gov/directorates/heo/scan/spectrum/txt_ electro- 
magnetic_spectrum.html). 
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previous studies suggest that PBMT is a safe thera-
peutic option; however, its applications are limited 
because its potential proliferative effects on tumor bi-
ology remain uncovered. Once these limitations are 

addressed, PBMT can be safely used for cancer treat-
ment in several clinical studies. While the full inves-
tigation of the effects of PBMT on biological 
processes is challenging, this section will highlight 
its effect on the molecular mechanisms of cancer cells 
(Figure 3). 

The Effect of PBMT on ATP Synthesis 
The mitochondrion is a dynamic organelle that plays 
an important role in intracellular signaling, energy 
production, and metabolic processes. It is responsi-
ble for synthesizing ATP, the primary energy cur-
rency of cells. Mitochondria convert nutrients into 
ATP via oxidative phosphorylation, which fuels dif-
ferent cellular activities. Furthermore, mitochondria 
are involved in regulating cellular metabolism and 
can affect important processes, such as apoptosis and 
calcium signaling.10 Oxidative phosphorylation is the 
process of generating high-energy ATP. During 
metabolic processes, when energy levels are depleted, 
ATP is converted to adenosine diphosphate or adeno-
sine monophosphate. ATP is primarily synthesized 
in the mitochondria, where high-energy electrons are 
transported via the electron transport chain. The elec-
tron transport chain depends on cytochrome c, which 
acts as an electron carrier in the respiratory chain.11 In 
vitro studies have revealed that PBMT increases mi-

FIGURE 2: Cellular effects of PBMT. 
PBMT: Photobiomodulation therapy; ATP: Adenosine triphosphate. 

FIGURE 3: The major molecular mechanisms of action of PBMT on cellular activity. 
PBMT: Photobiomodulation therapy; ROS: Reactive oxygen species; NO: Nitric oxide; ATP: Adenosine triphosphate. 
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tochondrial function and ATP production.12,13 This ef-
fect is mediated via the effect of laser irradiation on 
cytochrome c oxidase (Cox), a transmembrane pro-
tein within mitochondria.14 Consequently, increasing 
Cox activity can stimulate ATP synthesis.15 The im-
provement in ATP synthesis after laser irradiation can 
exhibit various biological effects, such as healing 
burn wounds, anti-inflammatory effects, and in-
creased muscle endurance during severe physical ex-
ercise.16-19 

The Effect of PBMT on Mitochondria 
The effects of PBMT on mitochondrial membrane 
potential, ROS, pH, and nitric oxide (NO) are well 
reported.10 PBMT stimulates mitogen-activated pro-
tein kinase/extracellular signal-regulated kinase sig-
naling by promoting the phosphorylation of tyrosine 
kinase receptors. This activity has been demonstrated 
to enhance cell proliferation.20,21 Furthermore, ROS 
plays a direct role in amplifying mitochondrial sig-
naling, thus contributing to increased proliferation. 
PBMT stimulates ROS production and affects the ac-
tion of various protein kinases.22 For instance, Src ty-
rosine kinases activated by ROS regulate essential 
cellular functions, such as cell proliferation and mi-
gration. Importantly, PBMT can exhibit bio-stimula-
tory effects via the activation of Src kinases by 
increasing ROS levels.23 Moreover, PBMT-induced 
ROS generation activates the transcription factor nu-
clear factor-kappa B (NF-kB), thereby regulating cell 
growth and apoptosis.24 

The Effect of PBMT on NO 
NO is acknowledged for its dual role in tumor devel-
opment, possessing both pro-oncogenic and anti-can-
cer properties.25 In both in vivo and in vitro 
experimental models, it has been shown that low-en-
ergy laser irradiation, such as in PBMT, can enhance 
the production of NO.26-28 Additionally, PBMT serves 
as a potent activator of the mitochondrial respiratory 
chain, thereby increasing NO production through 
Cox. PBMT stimulates the release of NO by increas-
ing the activity of the Cox complex.29 

The Effect of PBMT on Calcium Ions 
Calcium ions, playing a vital role in intracellular sig-
nal transduction and influencing various biological 

functions, impact cell viability and activity based on 
their concentrations. Studies have indicated an in-
crease in calcium permeability following PBMT.30,31 
Moreover, the increase in Ca2+ concentrations in-
duced by PBMT appears to be linked to the increased 
release of Ca2+ from intracellular stores.32 De Lima 
Santos Hde et al. reported a direct correlation be-
tween the increase of calcium and ROS levels after 
PBMT application. Additionally, PBMT was shown 
to influence the basal concentrations of sodium and 
potassium ions and change the ATPase activity of 
membrane ion pumps in a dose-dependent manner, 
which results in either an increase or decrease in 
Na(+), and K(+) ATPase activity.33 

The Effect of PBMT on Growth Factors 
Transforming growth factor-β (TGF-β) is a cytokine 
that influences the transcription of many target genes 
involved in the differentiation, proliferation, and ac-
tivation of different cells.34 TGF-β plays a significant 
role in collagen production by inducing the expres-
sion of extracellular matrix components and inhibiting 
their degradation by interfering with matrix metallo-
proteinases.35 PBMT has been linked with increased 
collagen synthesis via the TGF-β molecular pathway, 
thereby promoting increased regeneration of connec-
tive tissue.36 Notably, PBMT is assumed to suppress 
the immune response via the TGF-β signaling.  

In angiogenesis, vascular endothelial growth 
factor (VEGF) plays a crucial role. PBMT increases 
the expression of VEGF, playing a pivotal role in the 
etiopathogenesis of several tumors.37,38 

The Effect of PBMT on Transcription Factors 
PBMT modulates various transcription factors. One 
of these factors is NF-kB, which controls various cel-
lular processes, such as migration, proliferation, and 
inflammation.39 NF-kB activation can be induced by 
different factors, such as tumor necrosis factor-α 
(TNF-α), ROS, interleukins, and PMDT.24,40 An ap-
propriate dose of radiation activates this enzyme, pro-
moting cell proliferation and anti-inflammatory 
potential.41,42 However, exceeding the optimal radia-
tion dosage can result in increased oxidative stress 
and excessive NF-kB activation.43 Another transcrip-
tion factor that undergoes modification in response 
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to PBMT is the hypoxia-inducible factor (HIF), a 
small protein involved in the response of cells to hy-
poxia. Activation of HIF results in the upregulation of 
genes associated with glycolysis, allowing for ATP 
synthesis in an oxygen-independent manner, particu-
larly under hypoxic conditions. 

The Effect of PBMT on Apoptosis 
The mechanism of action of PBMT enhances cellular 
metabolism and proliferation; however, it causes 
apoptosis at high doses. The precise mechanism is 
not yet fully elucidated, but it has been indirectly 
linked to the production of ROS. Laser irradiation ini-
tiates the activation of glycogen synthase kinase 3 
(GSK3), which can trigger apoptosis.44 Another 
ROS-related mechanism that promotes apoptosis is 
the Akt/GSK3 pathway.45 PBMT irradiation affects 
proliferation and apoptosis by modulating the activ-
ity of specific kinases, such as C-kinase.46 Further-
more, PBMT inhibits apoptosis via the activation of 
the ROS/Src/Stat3 signaling pathway.44 Although the 
mechanism of apoptosis induced by LLLT is not en-
tirely known, existing knowledge indicates that the 
energy delivered by the laser plays a differentiating 
role in determining whether proliferation or apopto-
sis can occur.47 After PBMT, the upregulation of 
proapoptotic genes, such as BCL-2-associated X, has 
been observed at the mitochondrial membrane, along 
with the release of cytochrome c.48-55 

PBMT: MOLECULAR MECHANISMS OF  
ACTION IN CANCER 

PBMT has the potential to influence the immune sys-
tem by activating the anti-tumor immune response 
(Figure 4). The stress and damage induced in cells by 
ROS may augment the recognition of tumor antigens 
by the immune system. This, in turn, can facilitate an 
immune attack against cancer cells, thereby strength-
ening the systemic anti-tumor immune response. 
These effects underscore the crucial impact of pho-
tobiomodulation on the molecular targets within 
tumor cells.56 PBMT stimulates the generation of 
ROS, inducing oxidative stress and cellular damage 
in cancer cells. The heightened production of ROS 
amplifies oxidative stress, causing damage to cellular 
components such as lipids, proteins, and DNA. This 
disruption impairs the functions of cancer cells, ei-
ther inhibiting tumor proliferation or leading to cell 
death. Additionally, PBMT can induce vascular dam-
age in tumor blood vessels. The oxidative stress cre-
ated by ROS affects blood flow within the tumor, 
diminishing the supply of nutrients and oxygen up-
take. Consequently, hypoxia occurs in the cells, neg-
atively impacting tumor growth and metastasis.56 

PBMT holds the potential to either destroy can-
cer cells or control their growth. However, in utiliz-
ing PBMT for cancer treatment, it is crucial to 
establish an appropriate treatment protocol that takes 

FIGURE 4: PBMT in cancer. 
PBMT: Photobiomodulation therapy; DAMPs: Damage-associated molecular patterns; PS: Photosensitizer. 
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into account factors such as tumor type, location, and 
patient characteristics. The direct anti-tumor effects 
of PBMT-mediated damage lead to the reduction of 
tumor size through the activation of various cell 
death pathways, including apoptosis, autophagy, and 
necrosis. The localization of PS to mitochondria has 
been shown to induce apoptosis, whereas the local-
ization at the plasma membrane is more likely to 
trigger necrosis.57-61 Necrosis typically occurs due to 
excessive low-level radiation damage to the cell, dis-
rupting the structural integrity of the plasma mem-
brane.62 

PBMT facilitates mitochondrial membrane per-
meability by opening the inner membrane pore of the 
mitochondria, causing photosensitization and the in-
hibition of cytochrome c release after photodynamic 
injury, and finally inducing apoptosis.63-67 PBMT can 
also induce autophagy, which is another cell death 
pathway.52,68-70 PBMT-induced autophagy contributes 
to photodynamic damage to cellular structures, such 
as organelles, causing irreversible oxidation dam-
age.52,71 Furthermore, autophagy markers LC3-I and 
LC3-II proteins are increased after PBMT.72 

The Effect of PBMT on Immunogenic Cell Death  
Immunostimulatory molecules released from dying 
cells are called damage-associated molecular patterns 
(DAMPs). Cell death pathways, such as apoptosis, 
can initiate the release of DAMPs, causing immuno-
genic cell death (ICD) and inflammation.73-77 PBMT 
using various PSs can release DAMPs.78-86 During 
ICD, certain heat shock proteins, which are among 
the critical DAMPs, translocate to the cell surface, 
affecting phagocytosis by immune cells such as den-
dritic or recognition of CD94-mediated natural killer 
(NK).77 Triggering ICD can also lead to the extracel-
lular release of ATP, which signals dendritic cells 
(DCs) and promotes the release of proinflammatory 
cytokines.87,88 Nevertheless, the signaling mechanism 
underlying ATP release during ICD is complex and 
depends on the specific type of ICD initiation and the 
apoptotic stage of the cell.80  

The Effect of PBMT on Anti-Tumor Immune Responses 
The effectiveness of PBMT in inducing ICD and ex-
posing DAMPs can cause critical inflammation in the 

tumor microenvironment, triggering an anti-tumor 
immune response. During the earlier stage of the im-
mune reaction, tumor-infiltrating lymphocytes of 
myeloid lineage play an important role in neutralizing 
injured cells generated by PBMT.89,90 

Photodamage to the tumor vasculature can cause 
contraction of endothelial cells, facilitating neutrophil 
adhesion via integrin receptors.90,91 PBMT-induced 
damage can activate macrophages and induce the 
production of TNF-α through the stimulation of toll-
like receptor 2/4.86 NK cells, along with CD8+ cyto-
toxic T cells, are involved in the immune reaction 
following PBMT.92 Nevertheless, dying cancer cells 
following PBMT can promote the maturation of DCs, 
a process inhibited by the neutralization of DAMPs.84,93-

95 Despite the crucial role of DCs in the PBMT-induced 
anti-tumor immune activation via cross-presentation 
of tumor antigens and phagocytosis, all functions of 
DCs have not been completely elucidated.  

PBMT initiates a tumor-specific adaptive im-
mune defense while decreasing tumor size and/or dis-
rupting tumor vascularity. Previous studies have 
reported an increase in the number of CD8+ T cells 
within the tumor and the inhibition of treatment-in-
duced tumor growth compared with those in control 
groups.96-99 Furthermore, the intra-tumoral injection 
of naive DCs after PBMT can arrest tumor antigens, 
migrate to draining lymph nodes, and amplify tumor-
specific T cells.100 Furthermore, CD8+ T cell defi-
ciency can significantly decrease tumor growth and 
increase PBMT-induced progression-free sur-
vival.84,92,93,101-103 

 IN VITRO COMBINATION  
STUDIES IN CANCER 

PBMT may display a biphasic effect, either stimulat-
ing proliferation or triggering cell death, based on the 
parameters used, such as wavelength, power, and en-
ergy density, and dosing style and duration. In in vitro 
studies, PBMT was usually used as a continuous wave 
in the range of 660-810 nm and 0-150 J/cm2 for wave-
length and energy density, respectively. As shown in 
Table 1, PBMT acts as a chemo- and radio-sensitizer, 
allowing for dose reduction and thus alleviating 
chemotherapeutic-related adverse effects.104-107 PBMT 
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increases autophagy to kill cancer cells, decreases os-
teoclastogenic potential, and does not promote cancer 
stem cell self-renewal.108-110 Furthermore, PBMT does 
not decrease but may increase the viability of non-
cancer cells, protecting against antineoplastic-in-
duced toxicity (Table 1).111-115 

 IN VIVO COMBINATION  
STUDIES IN CANCER 

In vivo studies have used PBMT as a continuous 
wave in the range of 600-850 nm and up to 1050 
J/cm2 for wavelength and energy density, respectively 
with exposure time usually between 10 and 420 s. A 
recent review analyzing 15 in vivo studies concluded 
that PBMT is safe and effective; however, the applied 
PBMT parameters result in variable responses in di-
verse tumor models, and the cellular microenviron-
ment is a crucial factor affecting the outcome.121 
PBMT can also decrease antineoplastic drug-induced 
adverse effects. Following PBMT, hair regrowth oc-
curred 5 days early compared with the control groups 
(cyclophosphamide, etoposide, or a combination of 
cyclophosphamide and doxorubicin or sham laser-
treated).122 In vivo, combination studies reported 
some beneficial effects of PBMT. When combined 
with antineoplastic agents, immunotherapeutics, and 
RT, PBMT can decrease tumor size, increase effi-
cacy, and protect healthy cells (Table 2). 

 PHOTOBIOMODULATION IN  
TODAY’S CLINICAL PRACTICE 

Over the past two decades, the significance of PBMT 
has been increasingly recognized. In 2022, the 
WALT published a position paper that underscored 
the potential of PBMT in managing adverse effects 
associated with CT, RT, and hematopoietic stem cell 
transplantation (HSCT). Adverse effects induced by 
cancer therapy, such as dysphagia, xerostomia, dys-
geusia, trismus, radiodermatitis, alopecia, oral and 
dermatologic chronic graft versus host disease, 
voice/speech alterations, peripheral neuropathy, and 
late fibrosis, may find potential prophylaxis and treat-
ment through PBMT.126 

PBMT has been incorporated into a clinical 
practice guideline. The latest guideline from the Mu-

cositis Guidelines Leadership Group of the Multi-
national Association of Supportive Care in Cancer 
and International Society of Oral Oncology guide-
line recommends intraoral PBMT (LLLT) to pre-
vent of oral mucositis in adults undergoing HSCT 
with high-dose CT, RT, and combined RT plus CT 
for head and neck (H&N) carcinoma.127 Extraoral 
PBMT, which reaches distal mucosa, seems to be 
more advantageous.128 In pediatric practice, the use 
of intraoral PBMT in the red-light spectrum (620-
750 nm) is also recommended in pediatric practice 
in patients undergoing HSCT and RT for H&N con-
ditions. The pediatric guideline also emphasizes 
strong evidence against the routine use of palifer-
min due to its associated short- and long-term adverse 
effects.129  

 CONCLUSION AND FUTURE PROSPECTS 
The effectiveness of PBMT in various cancer types 
is influenced by specific parameters, such as wave-
length, power density (irradiance), energy density 
(fluence), and exposure time. For instance, low- 
energy density exhibits a stimulatory effect on pro-
liferation, whereas high-energy density inhibits pro-
liferation (Appendix 1).  

Selecting the appropriate dosage for PBMT in 
cancer treatment exhibits the following advantages: It 
can trigger the apoptotic process in the cancerous tis-
sue while protecting and even increasing the number 
of healthy cells.  

■ It improves the efficacy of antineoplastic 
agents, immunomodulators, and RT. 

■ It can reverse antineoplastic drug resistance.  

APPENDIX 1: Graphical Abstract: Photobiomodulation therapy 
PBMT: Photobiomodulation therapy.
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Furthermore, PBMT does not promote cancer 
stem cell renewal and phenotypes in certain cancer 
types.  

To conclude, further studies are warranted to es-
tablish the precise protocols for PBMT dosage. These 
studies are essential to address the aforementioned 
limitations and uncover the potential advantages of 
light therapy that have not yet been fully explored. 
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